SOLAR NEUTRINO PHYSICS: SENSITIVITY TO LIGHT DARK MATTER PARTICLES

被引:16
|
作者
Lopes, Ilidio [1 ,2 ]
Silk, Joseph [3 ,4 ,5 ]
机构
[1] Univ Tecn Lisboa, Inst Super Tecn, Ctr Multidisciplinar Astrofis, P-1049001 Lisbon, Portugal
[2] Univ Evora, Dept Fis, Escola Ciencia & Tecnol, Colegio Luis Antonio Verney, P-7002554 Evora, Portugal
[3] Univ Paris 06, UMR CNRS 7095, Inst Astrophys Paris, F-75014 Paris, France
[4] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA
[5] Univ Oxford, Beecroft Inst Particle Astrophys & Cosmol, Oxford OX1 3RH, England
来源
ASTROPHYSICAL JOURNAL | 2012年 / 752卷 / 02期
关键词
dark matter; elementary particles; stars: evolution; stars: interiors; Sun: interior; HELIOSEISMOLOGY; MODELS; EVOLUTION; STARS; PROBE; I;
D O I
10.1088/0004-637X/752/2/129
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Neutrinos are produced in several neutrino nuclear reactions of the proton-proton chain and carbon-nitrogen-oxygen cycle that take place at different radii of the Sun's core. Hence, measurements of solar neutrino fluxes provide a precise determination of the local temperature. The accumulation of non-annihilating light dark matter particles (with masses between 5 GeV and 16 GeV) in the Sun produces a change in the local solar structure, namely, a decrease in the central temperature of a few percent. This variation depends on the properties of the dark matter particles, such as the mass of the particle and its spin-independent scattering cross-section on baryon-nuclei, specifically, the scattering with helium, oxygen, and nitrogen among other heavy elements. This temperature effect can be measured in almost all solar neutrino fluxes. In particular, by comparing the neutrino fluxes generated by stellar models with current observations, namely B-8 neutrino fluxes, we find that non-annihilating dark matter particles with a mass smaller than 10 GeV and a spin-independent scattering cross-section with heavy baryon-nuclei larger than 3 x 10(-37) cm(-2) produce a variation in the B-8 neutrino fluxes that would be in conflict with current measurements.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Advances in cryogenic detectors for dark matter, neutrino physics and astrophysics
    L. Pattavina
    The European Physical Journal Plus, 138
  • [32] A SUPERSYMMETRIC SOLUTION TO THE SOLAR NEUTRINO AND DARK MATTER PROBLEMS
    GIUDICE, GF
    ROULET, E
    PHYSICS LETTERS B, 1989, 219 (2-3) : 309 - 314
  • [33] FOURTH GENERATION MAJORANA NEUTRINO, DARK MATTER AND HIGGS PHYSICS
    Bao, Shou-Shan
    Gong, Xue
    Si, Zong-Guo
    Zhou, Yu-Feng
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2014, 29 (02):
  • [34] Neutrino physics - Polymorphous particles solve solar mystery
    Seife, C
    SCIENCE, 2001, 292 (5525) : 2227 - +
  • [35] Sterile neutrino dark matter catalyzed by a very light dark photon
    Alonso-Alvarez, Gonzalo
    Cline, James M.
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2021, (10):
  • [36] Observing a light dark matter beam with neutrino experiments
    deNiverville, Patrick
    Pospelov, Maxim
    Ritz, Adam
    PHYSICAL REVIEW D, 2011, 84 (07):
  • [37] Light scalar dark matter at neutrino oscillation experiments
    Liao, Jiajun
    Marfatia, Danny
    Whisnant, Kerry
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (04):
  • [38] Complementarity of dark matter detectors in light of the neutrino background
    Ruppin, F.
    Billard, J.
    Figueroa-Feliciano, E.
    Strigari, L.
    PHYSICAL REVIEW D, 2014, 90 (08):
  • [39] Light scalar dark matter at neutrino oscillation experiments
    Jiajun Liao
    Danny Marfatia
    Kerry Whisnant
    Journal of High Energy Physics, 2018
  • [40] Neutrino experiments probe hadrophilic light dark matter
    Ema, Yohei
    Sala, Filippo
    Sato, Ryosuke
    SCIPOST PHYSICS, 2021, 10 (03):