Distribution-dependent Vapnik-Chervonenkis bounds

被引:0
|
作者
Vayatis, N
Azencott, R
机构
[1] Ctr Math & Leurs Applicat, Ecole Normale Super Cachan, F-94235 Cachan, France
[2] Ecole Polytech, Ctr Rech Epistemol Appl, F-91128 Palaiseau, France
来源
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Vapnik-Chervonenkis (VC) bounds play an important role in statistical learning theory as they are the fundamental result which explains the generalization ability of learning machines. There have been consequent mathematical works on the improvement of VC rates of convergence of empirical means to their expectations over the years. The result obtained by Talagrand in 1994 seems to provide more or less the final word to this issue as far as universal bounds are concerned. Though for fixed distributions, this bound can be practically outperformed. We show indeed that it is possible to replace the 2 epsilon(2) under the exponential of the deviation term by the corresponding Cramer transform as shown by large deviations theorems. Then, we formulate rigorous distribution-sensitive VC bounds and we also explain why these theoretical results on such bounds can lead to practical estimates of the effective VC dimension of learning structures.
引用
下载
收藏
页码:230 / 240
页数:11
相关论文
共 50 条
  • [21] Vapnik-Chervonenkis entropy of the spherical perceptron
    Riegler, P
    Seung, HS
    PHYSICAL REVIEW E, 1997, 55 (03): : 3283 - 3287
  • [22] Continuous and random Vapnik-Chervonenkis classes
    Itaï Ben Yaacov
    Israel Journal of Mathematics, 2009, 173 : 309 - 333
  • [23] Uniform approximation of Vapnik-Chervonenkis classes
    Adams, Terrence M.
    Nobel, Andrew B.
    BERNOULLI, 2012, 18 (04) : 1310 - 1319
  • [24] PROBABILISTIC ESTIMATION OF VAPNIK-CHERVONENKIS DIMENSION
    Klesk, Przemyslaw
    ICAART: PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE, VOL 1, 2012, : 262 - 270
  • [25] Continuous and random Vapnik-Chervonenkis classes
    Ben Yaacov, Itai
    ISRAEL JOURNAL OF MATHEMATICS, 2009, 173 (01) : 309 - 333
  • [26] On uniform concentration bounds for Bi-clustering by using the Vapnik-Chervonenkis theory
    Chakraborty, Saptarshi
    Das, Swagatam
    STATISTICS & PROBABILITY LETTERS, 2021, 175
  • [27] Model complexity control of extreme learning machine using Vapnik-Chervonenkis generalization bounds
    Liu, Xue-Yi
    Song, Chun-Yue
    Li, Ping
    Kongzhi Lilun Yu Yingyong/Control Theory and Applications, 2014, 31 (05): : 644 - 653
  • [28] VAPNIK-CHERVONENKIS DIMENSION AND (PSEUDO-)HYPERPLANE ARRANGEMENTS
    GARTNER, B
    WELZL, E
    DISCRETE & COMPUTATIONAL GEOMETRY, 1994, 12 (04) : 399 - 432
  • [29] GENERAL FEASIBILITY BOUNDS FOR SAMPLE AVERAGE APPROXIMATION VIA VAPNIK-CHERVONENKIS DIMENSION
    Lam, Henry
    Li, Fengpei
    SIAM JOURNAL ON OPTIMIZATION, 2022, 32 (02) : 1471 - 1497
  • [30] Refined exponential rates in Vapnik-Chervonenkis inequalities
    Azencott, R
    Vayatis, N
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 332 (06): : 563 - 568