Distribution-dependent Vapnik-Chervonenkis bounds

被引:0
|
作者
Vayatis, N
Azencott, R
机构
[1] Ctr Math & Leurs Applicat, Ecole Normale Super Cachan, F-94235 Cachan, France
[2] Ecole Polytech, Ctr Rech Epistemol Appl, F-91128 Palaiseau, France
来源
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Vapnik-Chervonenkis (VC) bounds play an important role in statistical learning theory as they are the fundamental result which explains the generalization ability of learning machines. There have been consequent mathematical works on the improvement of VC rates of convergence of empirical means to their expectations over the years. The result obtained by Talagrand in 1994 seems to provide more or less the final word to this issue as far as universal bounds are concerned. Though for fixed distributions, this bound can be practically outperformed. We show indeed that it is possible to replace the 2 epsilon(2) under the exponential of the deviation term by the corresponding Cramer transform as shown by large deviations theorems. Then, we formulate rigorous distribution-sensitive VC bounds and we also explain why these theoretical results on such bounds can lead to practical estimates of the effective VC dimension of learning structures.
引用
下载
收藏
页码:230 / 240
页数:11
相关论文
共 50 条
  • [1] VAPNIK-CHERVONENKIS BOUNDS FOR GENERALIZATION
    PARRONDO, JMR
    VANDENBROECK, C
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (09): : 2211 - 2223
  • [2] HOW TIGHT ARE THE VAPNIK-CHERVONENKIS BOUNDS
    COHN, D
    TESAURO, G
    NEURAL COMPUTATION, 1992, 4 (02) : 249 - 269
  • [3] Exact rates in Vapnik-Chervonenkis bounds
    Vayatis, N
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2003, 39 (01): : 95 - 119
  • [4] STATISTICAL-MECHANICS CALCULATION OF VAPNIK-CHERVONENKIS BOUNDS FOR PERCEPTRONS
    ENGEL, A
    FINK, W
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (23): : 6893 - 6914
  • [5] LEARNABILITY AND THE VAPNIK-CHERVONENKIS DIMENSION
    BLUMER, A
    EHRENFEUCHT, A
    HAUSSLER, D
    WARMUTH, MK
    JOURNAL OF THE ACM, 1989, 36 (04) : 929 - 965
  • [6] General Vapnik-Chervonenkis dimension bounds for quantum circuit learning
    Chen, Chih-Chieh
    Sogabe, Masaru
    Shiba, Kodai
    Sakamoto, Katsuyoshi
    Sogabe, Tomah
    JOURNAL OF PHYSICS-COMPLEXITY, 2022, 3 (04):
  • [7] Vapnik-Chervonenkis generalization bounds for real valued neural networks
    Hole, A
    NEURAL COMPUTATION, 1996, 8 (06) : 1277 - 1299
  • [8] Lower bounds on the vapnik-chervonenkis dimension of convex polytope classifiers
    Takacs, Gabor
    Pataki, Bela
    INES 2007: 11TH INTERNATIONAL CONFERENCE ON INTELLIGENT ENGINEERING SYSTEMS, PROCEEDINGS, 2007, : 145 - +
  • [9] Media Classification with Bayesian Optimization and Vapnik-Chervonenkis (VC) Bounds
    Bharitkar, Sunil
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 3847 - 3851
  • [10] A local Vapnik-Chervonenkis complexity
    Oneto, Luca
    Anguita, Davide
    Ridella, Sandro
    NEURAL NETWORKS, 2016, 82 : 62 - 75