A computable version of the random signs problem and Kolmogorov complexity

被引:3
|
作者
Dai, JJ [1 ]
机构
[1] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
关键词
Kolmogorov complexity theory; the random signs problem;
D O I
10.1016/j.spl.2003.12.002
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
An effective solution to a computable version of the random signs problem is formulated using a coefficient from Kolmogorov complexity theory. (C) 2003 Published by Elsevier B.V.
引用
收藏
页码:27 / 31
页数:5
相关论文
共 50 条
  • [31] Kolmogorov complexity - Foreword
    Durand, B
    THEORETICAL COMPUTER SCIENCE, 2002, 271 (1-2) : 1 - 1
  • [32] Why Kolmogorov complexity?
    Uspensky, VA
    COMPLEX SYSTEMS-BOOK, 2001, 6 : 201 - 260
  • [33] Compressibility and Kolmogorov Complexity
    Binns, Stephen
    Nicholson, Marie
    NOTRE DAME JOURNAL OF FORMAL LOGIC, 2013, 54 (01) : 105 - 123
  • [34] Axiomatizing Kolmogorov Complexity
    Antoine Taveneaux
    Theory of Computing Systems, 2013, 52 : 148 - 161
  • [35] KOLMOGOROV COMPLEXITY AND GAMES
    Toran, Jacobo
    Vereshchagin, Nikolay
    BULLETIN OF THE EUROPEAN ASSOCIATION FOR THEORETICAL COMPUTER SCIENCE, 2008, (94): : 43 - 75
  • [36] Empirical Kolmogorov Complexity
    Trachtenberg, Ari
    2018 INFORMATION THEORY AND APPLICATIONS WORKSHOP (ITA), 2018,
  • [37] Axiomatizing Kolmogorov Complexity
    Taveneaux, Antoine
    THEORY OF COMPUTING SYSTEMS, 2013, 52 (01) : 148 - 161
  • [38] Kolmogorov complexity and cryptography
    Andrej A. Muchnik
    Proceedings of the Steklov Institute of Mathematics, 2011, 274 : 193 - 203
  • [39] On the Formalisation of Kolmogorov Complexity
    Catt, Elliot
    Norrish, Michael
    CPP '21: PROCEEDINGS OF THE 10TH ACM SIGPLAN INTERNATIONAL CONFERENCE ON CERTIFIED PROGRAMS AND PROOFS, 2021, : 291 - 299
  • [40] On the complexity of the upgrading version of the maximal covering location problem
    Baldomero-Naranjo, Marta
    Kalcsics, Jorg
    Rodriguez-Chia, Antonio M.
    NETWORKS, 2024, 83 (04) : 627 - 641