Localized and periodic wave patterns for a nonic nonlinear Schrodinger equation

被引:22
|
作者
Chow, Kwok W. [1 ]
Rogers, Colin [2 ]
机构
[1] Univ Hong Kong, Dept Mech Engn, Pokfulam, Hong Kong, Peoples R China
[2] Univ New S Wales, Sch Math & Stat, Australian Res Council, Ctr Excellence Math & Stat Complex Syst, Sydney, NSW 2052, Australia
关键词
Nonlinear Schrodinger equations; Ninth order nonlinearity; POWER-LAW NONLINEARITY; ERMAKOV SYSTEMS; SOLITONS; SUPERPOSITION; MEDIA;
D O I
10.1016/j.physleta.2013.07.041
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Propagating modes in a class of 'nonic' derivative nonlinear Schrodinger equations incorporating ninth order nonlinearity are investigated by application of two key invariants of motion. A nonlinear equation for the squared wave amplitude is derived thereby which allows the exact representation of periodic patterns as well as localized bright and dark pulses in terms of elliptic and their classical hyperbolic limits. These modes represent a balance among cubic, quintic and nonic nonlinearities. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:2546 / 2550
页数:5
相关论文
共 50 条
  • [41] The nonlinear Schrodinger equation with polynomial law nonlinearity: localized chirped optical and solitary wave solutions
    Aziz, N.
    Seadawy, Aly R.
    Ali, K.
    Sohail, M.
    Rizvi, S. T. R.
    OPTICAL AND QUANTUM ELECTRONICS, 2022, 54 (07)
  • [42] Solving localized wave solutions of the derivative nonlinear Schrodinger equation using an improved PINN method
    Pu, Juncai
    Li, Jun
    Chen, Yong
    NONLINEAR DYNAMICS, 2021, 105 (02) : 1723 - 1739
  • [43] Analytical localized wave solutions of the generalized nonautonomous nonlinear Schrodinger equation with Gaussian shaped nonlinearity
    He, Jun-Rong
    Li, Hua-Mei
    Li, Jing
    OPTICS COMMUNICATIONS, 2012, 285 (17) : 3669 - 3673
  • [44] REMARK ON THE PERIODIC MASS CRITICAL NONLINEAR SCHRODINGER EQUATION
    Kishimoto, Nobu
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 142 (08) : 2649 - 2660
  • [45] ON A PERIODIC PROBLEM FOR THE NONLINEAR NONLOCAL SCHRODINGER-EQUATION
    KAIKINA, EI
    SHISHMAREV, IA
    DIFFERENTIAL EQUATIONS, 1993, 29 (11) : 1733 - 1736
  • [46] Classification of solutions of the forced periodic nonlinear Schrodinger equation
    Shlizerman, Eli
    Rom-Kedar, Vered
    NONLINEARITY, 2010, 23 (09) : 2183 - 2218
  • [47] Justification of the nonlinear Schrodinger equation in spatially periodic media
    Busch, Kurt
    Schneider, Guido
    Tkeshelashvili, Lasha
    Uecker, Hannes
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2006, 57 (06): : 905 - 939
  • [48] BIFURCATIONS OF PERIODIC ORBITS IN THE GENERALISED NONLINEAR SCHRODINGER EQUATION
    Bandara, Ravindra I.
    Giraldo, Andrus
    Broderick, Neil G. R.
    Krauskopf, Bernd
    JOURNAL OF COMPUTATIONAL DYNAMICS, 2025, 12 (02): : 178 - 211
  • [49] Gibbs measure for the periodic derivative nonlinear Schrodinger equation
    Thomann, Laurent
    Tzvetkov, Nikolay
    NONLINEARITY, 2010, 23 (11) : 2771 - 2791
  • [50] Invariant measures for the periodic derivative nonlinear Schrodinger equation
    Genovese, Giuseppe
    Luca, Renato
    Valeri, Daniele
    MATHEMATISCHE ANNALEN, 2019, 374 (3-4) : 1075 - 1138