A robust hidden semi-Markov model with application to aCGH data processing

被引:4
|
作者
Ding, Jiarui [1 ,2 ]
Shah, Sohrab [1 ,3 ]
机构
[1] Univ British Columbia, Dept Comp Sci, Vancouver, BC V5T 4E6, Canada
[2] BC Canc Agcy, Dept Mol Biol, Vancouver, BC V5T 4E6, Canada
[3] Univ British Columbia, Dept Pathol, Vancouver, BC V5T 4E6, Canada
关键词
array CGH data; copy number variation; hidden semi-Markov models; discriminative training; Student's t distribution; rhsmm; ARRAY; SEGMENTATION;
D O I
10.1504/IJDMB.2013.056616
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Hidden semi-Markov models are effective at modelling sequences with succession of homogenous zones by choosing appropriate state duration distributions. To compensate for model mis-specification and provide protection against outliers, we design a robust hidden semi-Markov model with Student's t mixture models as the emission distributions. The proposed approach is used to model array based comparative genomic hybridization data. Experiments conducted on the benchmark data from the Coriell cell lines, and glioblastoma multiforme data illustrate the reliability of the technique.
引用
收藏
页码:427 / 442
页数:16
相关论文
共 50 条
  • [41] Modified Hidden Semi-Markov Model for Modelling the Flat Fading Channel
    Chung, Wei-Ho
    Yao, Kung
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2009, 57 (06) : 1806 - 1814
  • [42] An enhanced Hidden Semi-Markov model for outlier detection in multivariate datasets
    Manoharan, G.
    Sivakumar, K.
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2022, 43 (05) : 5945 - 5951
  • [43] Activity recognition and abnormality detection with the switching hidden semi-Markov model
    Duong, TV
    Bui, HH
    Phung, DQ
    Venkatesh, S
    2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol 1, Proceedings, 2005, : 838 - 845
  • [44] A Logical Hierarchical Hidden Semi-Markov Model for Team Intention Recognition
    Yue, Shi-guang
    Jiao, Peng
    Zha, Ya-bing
    Yin, Quan-jun
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2015, 2015
  • [45] A Bayesian Approach to Hidden Semi-Markov Model Based Speech Synthesis
    Hashimoto, Kei
    Nankaku, Yoshihiko
    Tokuda, Keiichi
    INTERSPEECH 2009: 10TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION 2009, VOLS 1-5, 2009, : 1719 - 1722
  • [46] A semi-Markov maintenance model with credit rating application
    D'Amico, Guglielmo
    IMA JOURNAL OF MANAGEMENT MATHEMATICS, 2009, 20 (01) : 51 - 58
  • [47] Hidden Markov model based H∞ filtering for singular semi-Markov jump systems
    Li, Siyi
    Lian, Jie
    Gong, Liang
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2022, 32 (01) : 164 - 180
  • [48] Bagging in Hidden Semi-Markov Model for handwriting robot trajectory generation
    Jin, Yongbing
    Ran, Teng
    Yuan, Liang
    Lv, Kai
    Wang, Guoliang
    Xiao, Wendong
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2024, 46 (03) : 6325 - 6335
  • [49] A novel model for user clicks identification based on hidden semi-Markov
    Xu, C.
    Du, C.
    Zhao, G. F.
    Yu, S.
    JOURNAL OF NETWORK AND COMPUTER APPLICATIONS, 2013, 36 (02) : 791 - 798
  • [50] ECG segmentation algorithm based on bidirectional hidden semi-Markov model
    Huo, Rui
    Zhang, Liting
    Liu, Feifei
    Wang, Ying
    Liang, Yesong
    Wei, Shoushui
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 150