Charge and energy transfer in the context of colloidal nanocrystals

被引:3
|
作者
Irgen-Gioro, Shawn [1 ]
Yang, Muwen [1 ]
Padgaonkar, Suyog [1 ]
Chang, Woo Je [1 ]
Zhang, Zhengyi [1 ]
Nagasing, Benjamin [1 ]
Jiang, Yishu [1 ]
Weiss, Emily A. [1 ]
机构
[1] Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA
来源
CHEMICAL PHYSICS REVIEWS | 2020年 / 1卷 / 01期
基金
美国国家科学基金会;
关键词
EXCITON FINE-STRUCTURE; QUANTUM-DOT; ELECTRON-TRANSFER; DISTANCE-DEPENDENCE; SEMICONDUCTOR NANOCRYSTALS; DELOCALIZING LIGANDS; TRANSFER DYNAMICS; RELAXATION; GENERATION; RECOMBINATION;
D O I
10.1063/5.0033263
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
As the number of hybrid systems comprising quantum-confined semiconductor nanocrystals and molecules continues to grow, so does the need to accurately describe interfacial energy and charge transfer in these systems. The earliest work often successfully captured at least qualitative trends in the rates of these processes using well-known results from Forster, Dexter, and Marcus theories, but recent studies have showcased how unique properties of nanocrystals drive interfacial energy transfer (EnT) and charge transfer (CT) to diverge from familiar trends. This review first describes how the nanocrystal-ligand system fits, at least superficially, into conventional models for EnT and CT, and then gradually introduces individual properties of nanocrystals that complicate our understanding of EnT and CT mechanisms. The review then explores instances in which features of nanocrystals that seem detrimental, such as trap states that introduce non-radiative recombination pathways and strong spin-orbit coupling, can be controlled or used synergistically to produce a wider range of functionality than available in all-molecular donor-acceptor systems.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Charge transfer between acenes and PbS nanocrystals
    Dissanayake, D. M. N. M.
    Hatton, R. A.
    Lutz, T.
    Curry, R. J.
    Silva, S. R. P.
    NANOTECHNOLOGY, 2009, 20 (19)
  • [32] Spectroscopic evidence for nonradiative energy transfer between colloidal CdSe/ZnS nanocrystals and functionalized silicon substrates
    Nguyen, H. M.
    Seitz, O.
    Aureau, D.
    Sra, A.
    Nijem, N.
    Gartstein, Yu. N.
    Chabal, Y. J.
    Malko, A. V.
    APPLIED PHYSICS LETTERS, 2011, 98 (16)
  • [33] Energy Transfer in Silicon Nanocrystal Solids Made from All-Inorganic Colloidal Silicon Nanocrystals
    Furuta, Kenta
    Fujii, Minoru
    Sugimoto, Hiroshi
    Imakita, Kenji
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2015, 6 (14): : 2761 - 2766
  • [34] Colloidal Heterostructured Nanocrystals for Solar Energy Conversion Applications
    Li, Xinheng
    Zhang, Longzhu
    Song, Huanling
    Chou, Lingjun
    ENERGY AND ENVIRONMENT FOCUS, 2013, 2 (01) : 1 - 17
  • [35] Charge Storage and Quantum Confinement Resilience in Colloidal Indium Nitride Nanocrystals
    Liu, Zhihui
    Janes, Lisa M.
    Saniepay, Mersedeh
    Beaulac, Remi
    CHEMISTRY OF MATERIALS, 2018, 30 (15) : 5435 - 5443
  • [36] Charge retention in quantized energy levels of nanocrystals
    Dana, Aykutlu
    Akca, Imran
    Ergun, Orcun
    Aydinli, Atilla
    Turan, Rasit
    Finstad, Terje G.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2007, 38 (1-2): : 94 - 98
  • [37] Energy transfer between silicon nanocrystals
    O. B. Gusev
    A. A. Prokofiev
    O. A. Maslova
    E. I. Terukov
    I. N. Yassievich
    JETP Letters, 2011, 93
  • [38] Theory of Energy Transfer in Organic Nanocrystals
    Saez-Blazquez, Rocio
    Feist, Johannes
    Garcia-Vidal, Francisco J.
    Fernandez-Dominguez, Antonio I.
    ADVANCED OPTICAL MATERIALS, 2020, 8 (23)
  • [39] Energy Transfer between Silicon Nanocrystals
    Gusev, O. B.
    Prokofiev, A. A.
    Maslova, O. A.
    Terukov, E. I.
    Yassievich, I. N.
    JETP LETTERS, 2011, 93 (03) : 147 - 150
  • [40] Energy transfer from colloidal nanocrystals into Si substrates studied via photoluminescence photon counts and decay kinetics
    Nguyen, H. M.
    Seitz, O.
    Gartstein, Yu N.
    Chabal, Y. J.
    Malko, A. V.
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2013, 30 (09) : 2401 - 2408