Blind source separation methods for deconvolution cancer biology

被引:23
|
作者
Zinovyev, Andrei [1 ,2 ,3 ]
Kairov, Ulykbek [4 ,5 ]
Karpenyuk, Tatyana [4 ]
Ramanculov, Erlan [5 ]
机构
[1] Inst Curie, Paris, France
[2] INSERM, U900, Paris, France
[3] Mines ParisTech, Fontainebleau, France
[4] Kazakh Natl Univ, Alma Ata, Kazakhstan
[5] Natl Ctr Biotechnol Republ Kazakhstan, Astana, Kazakhstan
关键词
Cancer; Gene expression; Data analysis; Linear data approximation; Independent component analysis; Non-negative matrix factorization; INDEPENDENT COMPONENT ANALYSIS; MATRIX FACTORIZATION METHODS; MICROARRAY DATA; TUMOR CLASSIFICATION; DISCOVERY; MODEL;
D O I
10.1016/j.bbrc.2012.12.043
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Two blind source separation methods (Independent Component Analysis and Non-negative Matrix Factorization), developed initially for signal processing in engineering, found recently a number of applications in analysis of large-scale data in molecular biology. In this short review, we present the common idea behind these methods, describe ways of implementing and applying them and point out to the advantages compared to more traditional statistical approaches. We focus more specifically on the analysis of gene expression in cancer. The review is finalized by listing available software implementations for the methods described. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:1182 / 1187
页数:6
相关论文
共 50 条
  • [21] Blind channel deconvolution of real world signals using source separation techniques
    Solé-Casals, J
    Monte-Moren, E
    NONLINEAR ANALYSES AND ALGORITHMS FOR SPEECH PROCESSING, 2005, 3817 : 357 - 367
  • [22] Unsupervised Processing of Geophysical Signals A review of some key aspects of blind deconvolution and blind source separation
    Takahata, Andre K.
    Nadalin, Everton Z.
    Ferrari, Rafael
    Duarte, Leonardo Tomazeli
    Suyama, Ricardo
    Lopes, Renato R.
    Romano, Joao M. T.
    Tygel, Martin
    IEEE SIGNAL PROCESSING MAGAZINE, 2012, 29 (04) : 27 - 35
  • [23] Multiresolution Subband Blind Source Separation: Models and Methods
    Li, Hongwei
    Li, Rui
    Wang, Fasong
    JOURNAL OF COMPUTERS, 2009, 4 (07) : 681 - 688
  • [24] Maternal and foetal ECG separation using blind source separation methods
    Zarzoso, V.
    Nandi, A. K.
    Bacharakis, E.
    IMA Journal of Mathematics Applied in Medicine & Biology, 14 (03):
  • [25] Multiuser processing using blind source separation methods
    Cavalcante, Charles Casimiro
    Zanatta Filho, D.
    Travassos Romano, Joao Marcos
    EUROPEAN TRANSACTIONS ON TELECOMMUNICATIONS, 2008, 19 (07): : 827 - 836
  • [26] Natural Gradient Improvement Methods in Blind Source Separation
    Bai Jun
    Shen Xiao-hong
    Wang Hai-yan
    Zhang Xue
    PROCEEDINGS OF THE 2009 2ND INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, VOLS 1-9, 2009, : 3737 - 3741
  • [27] Maternal and foetal ECG separation using blind source separation methods
    Zarzoso, V
    Nandi, AK
    Bacharakis, E
    IMA JOURNAL OF MATHEMATICS APPLIED IN MEDICINE AND BIOLOGY, 1997, 14 (03): : 207 - 225
  • [28] AN INFORMATION MAXIMIZATION APPROACH TO BLIND SEPARATION AND BLIND DECONVOLUTION
    BELL, AJ
    SEJNOWSKI, TJ
    NEURAL COMPUTATION, 1995, 7 (06) : 1129 - 1159
  • [29] Transpose properties in the stability and performance of the classic adaptive algorithms for blind source separation and deconvolution
    von Hoff, TP
    Lindgren, AG
    Kaelin, AN
    SIGNAL PROCESSING, 2000, 80 (09) : 1807 - 1822
  • [30] Natural gradient multichannel blind deconvolution and source separation using causal FIR filters
    Douglas, SC
    Sawada, H
    Makino, S
    2004 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL V, PROCEEDINGS: DESIGN AND IMPLEMENTATION OF SIGNAL PROCESSING SYSTEMS INDUSTRY TECHNOLOGY TRACKS MACHINE LEARNING FOR SIGNAL PROCESSING MULTIMEDIA SIGNAL PROCESSING SIGNAL PROCESSING FOR EDUCATION, 2004, : 477 - 480