Learning for Active 3D Mapping

被引:11
|
作者
Zimmermann, Karel [1 ]
Petricek, Tomas [1 ]
Salansky, Vojtech [1 ]
Svoboda, Tomas [1 ]
机构
[1] Czech Tech Univ, Fac Elect Engn, Prague, Czech Republic
来源
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV) | 2017年
关键词
D O I
10.1109/ICCV.2017.171
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose an active 3D mapping method for depth sensors, which allow individual control of depth-measuring rays, such as the newly emerging solid-state lidars. The method simultaneously (i) learns to reconstruct a dense 3D occupancy map from sparse depth measurements, and (ii) optimizes the reactive control of depth-measuring rays. To make the first step towards the online control optimization, we propose a fast prioritized greedy algorithm, which needs to update its cost function in only a small fraction of possible rays. The approximation ratio of the greedy algorithm is derived. An experimental evaluation on the subset of the KITTI dataset demonstrates significant improvement in the 3D map accuracy when learning-to-reconstruct from sparse measurements is coupled with the optimization of depth measuring rays.
引用
收藏
页码:1548 / 1556
页数:9
相关论文
共 50 条
  • [31] On Active Labeling 3D Point Clouds via Contrastive Learning
    Yang G.
    Lai W.
    Huang H.
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2023, 35 (11): : 1664 - 1673
  • [32] Efficient Active Learning Strategies for Monocular 3D Object Detection
    Hekimoglu, Aral
    Schmidt, Michael
    Marcos-Ramiro, Alvaro
    Rigoll, Gerhard
    2022 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2022, : 295 - 302
  • [33] A Real 3D Embodied Dataset for Robotic Active Visual Learning
    Zhao, Qianfan
    Zhang, Lu
    Wu, Lingxi
    Qiao, Hong
    Liu, Zhiyong
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (03) : 6646 - 6652
  • [34] Support Vector Machine active learning for 3D model retrieval
    Biao Leng
    Zheng Qin
    Li-quan Li
    Journal of Zhejiang University-SCIENCE A, 2007, 8 : 1953 - 1961
  • [36] LEARNING MATHEMATICAL CONCEPTS WITH 3D ANIMATION: ACTIVE VISUALIZATION OF A QUATERNION
    Polyak, E.
    5TH INTERNATIONAL CONFERENCE OF EDUCATION, RESEARCH AND INNOVATION (ICERI 2012), 2012, : 5826 - 5831
  • [37] 3D Semantic Labeling of Photogrammetry Meshes Based on Active Learning
    Rong, Mengqi
    Shen, Shuhan
    Hu, Zhanyi
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 3550 - 3557
  • [38] LEARNING-BASED TONE MAPPING TO IMPROVE 3D SAS ATR
    Vetaw, Gregory D.
    Cowen, Benjamin
    Brown, Daniel C.
    Williams, David P.
    Jayasuriya, Suren
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 6995 - 6998
  • [39] Deep learning for improving non-destructive grain mapping in 3D
    Fang, H.
    Hovad, E.
    Zhang, Y.
    Clemmensen, L. K. H.
    Ersboll, B. Kjaer
    Jensen, D. Juul
    IUCRJ, 2021, 8 : 719 - 731
  • [40] 3D Deep Learning Enables Accurate Layer Mapping of 2D Materials
    Dong, Xingchen
    Li, Hongwei
    Jiang, Zhutong
    Gruenleitner, Theresa
    Gueler, Inci
    Dong, Jie
    Wang, Kun
    Koehler, Michael H.
    Jakobi, Martin
    Menze, Bjoern H.
    Yetisen, Ali K.
    Sharp, Ian D.
    Stier, Andreas, V
    Finley, Jonathan J.
    Koch, Alexander W.
    ACS NANO, 2021, 15 (02) : 3139 - 3151