QUALITATIVE PROPERTIES OF WEAK SOLUTIONS FOR p-LAPLACIAN EQUATIONS WITH NONLOCAL SOURCE AND GRADIENT ABSORPTION

被引:6
|
作者
Chaouai, Zakariya [1 ]
El Hachimi, Abderrahmane [1 ]
机构
[1] Mohammed V Univ, Fac Sci, Lab Math Anal & Applicat LAMA, Ctr Math Res Rabat CeReMAR, POB 1014, Rabat, Morocco
关键词
Parabolic p-Laplacian equation; global existence; blow-up; non-local source; gradient absorption; NONLINEAR PARABOLIC EQUATION; BLOW-UP SOLUTIONS; EXTINCTION; BOUNDARY;
D O I
10.4134/BKMS.b190720
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the following Dirichlet initial boundary value problem with a gradient absorption and a nonlocal source partial derivative u/partial derivative t - div(vertical bar del u vertical bar(p-2)del u) = lambda u(k) integral(Omega) u(s)dx - mu u(l)vertical bar del u vertical bar(q) in a bounded domain Omega subset of R-N, where p > 1, the parameters k, s, l, q, lambda > 0 and mu >= 0. Firstly, we establish local existence for weak solutions; the aim of this part is to prove a crucial priori estimate on vertical bar del u vertical bar. Then, we give appropriate conditions in order to have existence and uniqueness or nonexistence of a global solution in time. Finally, depending on the choices of the initial data, ranges of the coefficients and exponents and measure of the domain, we show that the non-negative global weak solution, when it exists, must extinct after a finite time.
引用
收藏
页码:1003 / 1031
页数:29
相关论文
共 50 条
  • [31] Uniqueness and positivity for solutions of equations with the p-Laplacian
    Fleckinger-Pelle, J
    Hernandez, J
    Takac, P
    de Thelin, F
    REACTION DIFFUSION SYSTEMS, 1998, 194 : 141 - 155
  • [32] On the existence and regularity of solutions to singular parabolic p-Laplacian equations with absorption term
    Mounim El Ouardy
    Youssef El Hadfi
    Abdelaaziz Sbai
    Rendiconti del Circolo Matematico di Palermo Series 2, 2023, 72 : 4119 - 4147
  • [33] Regularity of solutions to degenerate p-Laplacian equations
    Cruz-Uribe, David
    Moen, Kabe
    Naibo, Virginia
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 401 (01) : 458 - 478
  • [34] Multiple solutions for p-Laplacian type equations
    Kristaly, Alexandru
    Lisei, Hannelore
    Varga, Csaba
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (05) : 1375 - 1381
  • [35] Existence of solutions for p-Laplacian discrete equations
    Bisci, Giovanni Molica
    Repovs, Dusan
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 242 : 454 - 461
  • [36] Multiple solutions for a system of equations with p-Laplacian
    Cai, Shuting
    Li, Yongqing
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2008, 245 (09) : 2504 - 2521
  • [37] Multiple solutions for coercive p-Laplacian equations
    Liu, SB
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 316 (01) : 229 - 236
  • [38] Nontrivial solutions of superlinear p-Laplacian equations
    Fang, Fei
    Liu, Shibo
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 351 (01) : 138 - 146
  • [39] Singular solutions of parabolic p-Laplacian with absorption
    Chen, Xinfu
    Qi, Yuanwei
    Wang, Mingxin
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 359 (11) : 5653 - 5668
  • [40] POSITIVE SOLUTIONS FOR PARAMETRIC p-LAPLACIAN EQUATIONS
    Papageorgiou, Nikolaos S.
    Smyrlis, George
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2016, 15 (05) : 1545 - 1570