Exact inference for Laplace distribution under progressive Type-II censoring based on BLUEs

被引:2
|
作者
Liu, Kai [1 ]
Zhu, Xiaojun [2 ]
Balakrishnan, N. [1 ]
机构
[1] McMaster Univ, Dept Math & Stat, Hamilton, ON L8S 4K1, Canada
[2] Xian Jiaotong Liverpool Univ, Dept Math Sci, Suzhou 215123, Jiangsu, Peoples R China
关键词
Best Linear Unbiased Estimators; Confidence interval; Cumulative hazard function; Exact distribution function; Hypoexponential distribution; Laplace distribution; Progressive Type-II censoring; P-P plot; Quantile; Reliability function; INTERVAL ESTIMATION; ORDER-STATISTICS; PARAMETERS; SAMPLES; LIFE;
D O I
10.1007/s00184-017-0640-1
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, upon using the known expressions for the Best Linear Unbiased Estimators (BLUEs) of the location and scale parameters of the Laplace distribution based on a progressively Type-II right censored sample, we derive the exact moment generating function (MGF) of the linear combination of standard Laplace order statistics. By using this MGF, we obtain the exact density function of the linear combination. This density function is then utilized to develop exact marginal confidence intervals (CIs) for the location and scale parameters through some pivotal quantities. Next, we derive the exact density of the BLUEs-based quantile estimator and use it to develop exact CIs for the population quantile. A brief mention is made about the reliability and cumulative hazard functions and as to how exact CIs can be constructed for these functions based on BLUEs. A Monte Carlo simulation study is then carried out to evaluate the performance of the developed inferential results. Finally, an example is presented to illustrate the point and interval estimation methods developed here.
引用
收藏
页码:211 / 227
页数:17
相关论文
共 50 条
  • [11] Exact likelihood inference for Laplace distribution based on Type-II censored samples
    Iliopoulos, G.
    Balakrishnan, N.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2011, 141 (03) : 1224 - 1239
  • [12] Pivotal-based inference for a Pareto distribution under the adaptive progressive Type-II censoring scheme
    Jeon, Young Eun
    Kang, Suk-Bok
    Seo, Jung -In
    AIMS MATHEMATICS, 2024, 9 (03): : 6041 - 6059
  • [13] Statistical Inference of Chen Distribution Based on Two Progressive Type-II Censoring Schemes
    Aljohani, Hassan M.
    CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 66 (03): : 2797 - 2814
  • [14] Statistical Inference for the Gompertz Distribution Based on Adaptive Type-II Progressive Censoring Scheme
    Amein, M. M.
    El-Saady, M.
    Shrahili, M. M.
    Shafay, A. R.
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2022, 2022
  • [15] Inference methods for the Very Flexible Weibull distribution based on progressive type-II censoring
    Brito, Eder S.
    Ferreira, Paulo H.
    Tomazella, Vera L. D.
    Martins Neto, Daniele S. B.
    Ehlers, Ricardo S.
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2023, 53 (11) : 5342 - 5366
  • [16] Inference for the Proportional Hazards Family under Progressive Type-II Censoring
    Asgharzadeh, A.
    Valiollahi, R.
    JIRSS-JOURNAL OF THE IRANIAN STATISTICAL SOCIETY, 2009, 8 (1-2): : 35 - 53
  • [17] Exact inference for the two-parameter exponential distribution under Type-II hybrid censoring
    Ganguly, A.
    Mitra, S.
    Samanta, D.
    Kundu, D.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2012, 142 (03) : 613 - 625
  • [18] Inference in the generalized exponential distribution under partially accelerated tests with progressive Type-II censoring
    Ismail, Ali A.
    THEORETICAL AND APPLIED FRACTURE MECHANICS, 2012, 59 (01) : 49 - 56
  • [19] Statistical Inference for the Weighted Exponential Distribution under Progressive Type-II Censoring with Binomial Removal
    Dey S.
    Kayal T.
    Tripathi Y.M.
    Tripathi, Yogesh Mani (yogesh@iitp.ac.in), 2018, Taylor and Francis Ltd. (37) : 188 - 208
  • [20] Statistical inference for the extreme value distribution under adaptive Type-II progressive censoring schemes
    Ye, Zhi-Sheng
    Chan, Ping-Shing
    Xie, Min
    Ng, Hon Keung Tony
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2014, 84 (05) : 1099 - 1114