Multispectral Registration, Undistortion and Tree Detection for Precision Agriculture

被引:1
|
作者
Lopez, Alfonso [1 ]
Jurado, Juan M. [1 ]
Ogayar, Carlos J. [1 ]
Feito, Francisco R. [1 ]
机构
[1] Univ Jaen, Dept Comp Sci, Jaen, Spain
来源
XXIX SPANISH COMPUTER GRAPHICS CONFERENCE (CEIG19) | 2019年
关键词
Image registration; Multispectral image; Distortion removal; Image segmentation;
D O I
10.2312/ceig.20191209
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Multi-lens multispectral cameras allow us to record multispectral information for a whole area of terrain, even though we may only need the vegetation data. Based on the intensity of each multispectral image we can retrieve the contours of the trees that appear on the recorded terrain. However, multispectral cameras use a physically different lens for each range of wavelengths and misregistration effects could appear due to the different viewing positions. As these types of lenses are dedicated to capture larger areas of terrain, their focal distance is lower and because of this we get what is called a fisheye distortion. Therefore if we want to retrieve the shape of each tree and its multispectral data we need to process the channels so them all are representated as undistorted images under a same reference system.
引用
收藏
页码:85 / 88
页数:4
相关论文
共 50 条
  • [21] Assessment of Tree Detection Methods in Multispectral Aerial Images
    Pulido, Dagoberto
    Salas, Joaquin
    Ros, Matthias
    Puettmann, Klaus
    Karaman, Sertac
    REMOTE SENSING, 2020, 12 (15)
  • [22] Measuring performance in precision agriculture: CART - A decision tree approach
    Waheed, T.
    Bonnell, R. B.
    Prasher, S. O.
    Paulet, E.
    AGRICULTURAL WATER MANAGEMENT, 2006, 84 (1-2) : 173 - 185
  • [23] Neural networks for Pest Detection in Precision Agriculture
    Segalla, Andrea
    Fiacco, Gianluca
    Tramarin, Luca
    Nardello, Matteo
    Brunelli, Davide
    PROCEEDINGS OF 2020 IEEE INTERNATIONAL WORKSHOP ON METROLOGY FOR AGRICULTURE AND FORESTRY (METROAGRIFOR), 2020, : 7 - 12
  • [24] Digital Twin for Bruise Detection in Precision Agriculture
    Nair, Midhun
    Dede, Obeng Lydia
    De, Soumadeep
    Fernandez, Renny Edwin
    2024 IEEE 21ST CONSUMER COMMUNICATIONS & NETWORKING CONFERENCE, CCNC, 2024, : 562 - 565
  • [25] UAV Imaging with Low-cost Multispectral Imaging System for Precision Agriculture Applications
    Honrado, J. L. E.
    Solpico, D. B.
    Favila, C. M.
    Tongson, E.
    Tangonan, G. L.
    Libatique, N. J. C.
    2017 IEEE GLOBAL HUMANITARIAN TECHNOLOGY CONFERENCE (GHTC), 2017, : 88 - 94
  • [26] Vicarious radiometric calibration of a multispectral sensor from an aerial trike applied to precision agriculture
    Herrero-Huerta, Monica
    Hernandez-Lopez, David
    Rodriguez-Gonzalvez, Pablo
    Gonzalez-Aguilera, Diego
    Gonzalez-Piqueras, Jose
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2014, 108 : 28 - 38
  • [27] COMBINING HYPERSPECTRAL UAV AND MULTISPECTRAL FORMOSAT-2 IMAGERY FOR PRECISION AGRICULTURE APPLICATIONS
    Gevaert, C. M.
    Tang, J.
    Garcia-Haro, F. J.
    Suomalainen, J.
    Kooistra, L.
    2014 6TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2014,
  • [28] TOPSOIL MOISTURE ESTIMATION FOR PRECISION AGRICULTURE USING UNMMANED AERIAL VEHICLE MULTISPECTRAL IMAGERY
    Hassan-Esfahani, Leila
    Torres-Rua, Alfonso
    Ticlavilca, Andres M.
    Jensen, Austin
    McKee, Mac
    2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014,
  • [29] AN OBJECT BASED IMAGE ANALYSIS OF MULTISPECTRAL SATELLITE AND DRONE IMAGES FOR PRECISION AGRICULTURE MONITORING
    Dwivedi, Arun Kant
    Singh, Arun Kumar
    Singh, Dharmendra
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 4899 - 4902
  • [30] Automated registration method with disparity detection for remotely sensed multispectral images
    Hanaizumi, H
    Kanemoto, Y
    Fujimura, S
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING III, 1996, 2955 : 2 - 8