Multispectral Registration, Undistortion and Tree Detection for Precision Agriculture

被引:1
|
作者
Lopez, Alfonso [1 ]
Jurado, Juan M. [1 ]
Ogayar, Carlos J. [1 ]
Feito, Francisco R. [1 ]
机构
[1] Univ Jaen, Dept Comp Sci, Jaen, Spain
关键词
Image registration; Multispectral image; Distortion removal; Image segmentation;
D O I
10.2312/ceig.20191209
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Multi-lens multispectral cameras allow us to record multispectral information for a whole area of terrain, even though we may only need the vegetation data. Based on the intensity of each multispectral image we can retrieve the contours of the trees that appear on the recorded terrain. However, multispectral cameras use a physically different lens for each range of wavelengths and misregistration effects could appear due to the different viewing positions. As these types of lenses are dedicated to capture larger areas of terrain, their focal distance is lower and because of this we get what is called a fisheye distortion. Therefore if we want to retrieve the shape of each tree and its multispectral data we need to process the channels so them all are representated as undistorted images under a same reference system.
引用
收藏
页码:85 / 88
页数:4
相关论文
共 50 条
  • [1] Neural Network-based Stress Detection in Crop Multispectral Imagery for Precision Agriculture
    Reyes-Hung, Lidices
    Soto, Ismael
    Majumdar, Arun K.
    2024 14TH INTERNATIONAL SYMPOSIUM ON COMMUNICATION SYSTEMS, NETWORKS AND DIGITAL SIGNAL PROCESSING, CSNDSP 2024, 2024, : 551 - 556
  • [2] Customized Shape Detection Algorithms for Radiometric Calibration of Multispectral Imagers for Precision Agriculture Applications
    Mitchell, Nicholas S.
    Bakhtazad, Aref
    Sabarinathan, Jayshri
    2020 IEEE CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (CCECE), 2020,
  • [3] Multispectral aerial image processing system for precision agriculture
    Kharuf-Gutierrez, Samy
    Orozco-Morales, Ruben
    Aday Diaz, Osmany de la C.
    Pineda Ruiz, Emma
    SISTEMAS & TELEMATICA, 2018, 16 (47): : 45 - 58
  • [4] Automated registration of hyperspectral images for precision agriculture
    Erives, H
    Fitzgerald, GJ
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2005, 47 (02) : 103 - 119
  • [5] MDE-based Development of a Multispectral Camera for Precision Agriculture
    Doering, D.
    Vizzotto, M. R.
    Bredemeier, C.
    da Costa, C. M.
    Henriques, R. V. B.
    Pignaton, E.
    Pereira, C. E.
    IFAC PAPERSONLINE, 2016, 49 (30): : 24 - 29
  • [6] RADIOMETRIC PERFORMANCE OF MULTISPECTRAL CAMERA APPLIED TO OPERATIONAL PRECISION AGRICULTURE
    Gonzalez-Piqueras, J.
    Sanchez, S.
    Villodre, J.
    Lopez, H.
    Calera, A.
    Hernandez-Lopez, D.
    Sanchez, J. M.
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 3393 - 3396
  • [7] A tree counting algorithm for precision agriculture tasks
    Santoro, Franco
    Tarantino, Eufemia
    Figorito, Benedetto
    Gualano, Stefania
    D'Onghia, Anna Maria
    INTERNATIONAL JOURNAL OF DIGITAL EARTH, 2013, 6 (01) : 94 - 102
  • [8] Comprehensive Evaluation of Multispectral Image Registration Strategies in Heterogenous Agriculture Environment
    Rana, Shubham
    Gerbino, Salvatore
    Crimaldi, Mariano
    Cirillo, Valerio
    Carillo, Petronia
    Sarghini, Fabrizio
    Maggio, Albino
    JOURNAL OF IMAGING, 2024, 10 (03)
  • [9] Development of a multispectral system for precision agriculture applications using embedded devices
    Torres Galindo, Angie Katherine
    Gomez Rivera, Andres Felipe
    Jimenez Lopez, Andres Fernando
    SISTEMAS & TELEMATICA, 2015, 13 (33): : 27 - 44
  • [10] GFkuts: a novel multispectral image segmentation method applied to precision agriculture
    Correa, Edgar S.
    Calderon, Francisco
    Colorado, Julian D.
    2020 VIRTUAL SYMPOSIUM IN PLANT OMICS SCIENCES (OMICAS), 2020,