Fixed-time Synchronization of Fractional-order Hopfield Neural Networks

被引:4
|
作者
Mei, Xu [1 ]
Ding, Yucai [1 ]
机构
[1] Southwest Univ Sci & Technol, Sch Sci, Mianyang 621010, Sichuan, Peoples R China
关键词
Feedback controller; fixed-time synchronization; fractional order; Hopfield neural networks; SLIDING-MODE CONTROL; ROBUST STABILITY; SYSTEMS; STABILIZATION;
D O I
10.1007/s12555-021-0529-7
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper investigates the fixed-time synchronization of fractional-order Hopfield neural networks (FHNNs). The aim of this paper is to design a state-feedback controller to make the synchronization error convergent to zero within bounded time. Based on the Lyapunov function and fractional calculus theory, we derived some criteria of synchronization for delay-free FHNNs and delayed FHNNs, respectively. At the same time, the upper bound of settling time for synchronization are given. Numerical simulations demonstrate the effectiveness of the theoretical analysis.
引用
收藏
页码:3584 / 3591
页数:8
相关论文
共 50 条
  • [31] Synchronization for fractional-order discrete-time neural networks with time delays
    Gu, Yajuan
    Wang, Hu
    Yu, Yongguang
    APPLIED MATHEMATICS AND COMPUTATION, 2020, 372
  • [32] Robust synchronization of memristor-based fractional-order Hopfield neural networks with parameter uncertainties
    Shuxin Liu
    Yongguang Yu
    Shuo Zhang
    Neural Computing and Applications, 2019, 31 : 3533 - 3542
  • [33] Robust synchronization of memristor-based fractional-order Hopfield neural networks with parameter uncertainties
    Liu, Shuxin
    Yu, Yongguang
    Zhang, Shuo
    NEURAL COMPUTING & APPLICATIONS, 2019, 31 (08): : 3533 - 3542
  • [34] Hybrid Projective Synchronization of Fractional-Order Neural Networks with Time Delays
    Velmurugan, G.
    Rakkiyappan, R.
    MATHEMATICAL ANALYSIS AND ITS APPLICATIONS, 2015, 143 : 645 - 655
  • [35] Synchronization and Robust Synchronization for Fractional-Order Coupled Neural Networks
    Wang, Shuxue
    Huang, Yanli
    Ren, Shunyan
    IEEE ACCESS, 2017, 5 : 12439 - 12448
  • [36] alpha-stability of fractional-order Hopfield neural networks
    Xu, Changjin
    Li, Peiluan
    INTERNATIONAL JOURNAL OF DYNAMICAL SYSTEMS AND DIFFERENTIAL EQUATIONS, 2018, 8 (04) : 270 - 279
  • [37] Fractional-order Fixed-time Nonsingular Backstepping Control of an Incommensurate Fractional-order Ferroresonance System
    Li, Xiaoteng
    Wang, Yan
    Liu, Ling
    Liu, Chongxin
    2019 CHINESE AUTOMATION CONGRESS (CAC2019), 2019, : 818 - 823
  • [38] Output synchronization analysis of coupled fractional-order neural networks with fixed and adaptive couplings
    Peng Liu
    Yunliu Li
    Junwei Sun
    Yanfeng Wang
    Neural Computing and Applications, 2023, 35 : 517 - 528
  • [39] Output synchronization analysis of coupled fractional-order neural networks with fixed and adaptive couplings
    Liu, Peng
    Li, Yunliu
    Sun, Junwei
    Wang, Yanfeng
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (01): : 517 - 528
  • [40] A comment on "α-stability and α-synchronization for fractional-order neural networks"
    Li Kexue
    Peng Jigen
    Gao Jinghuai
    NEURAL NETWORKS, 2013, 48 : 207 - 208