Electrospun fibrous mats as skeletons to produce free-standing MOF membranes

被引:128
|
作者
Wu, Yi-nan [1 ,2 ]
Li, Fengting [1 ]
Liu, Huimin [2 ]
Zhu, Wei [2 ]
Teng, Minmin [1 ]
Jiang, Yin [2 ]
Li, Weina [2 ]
Xu, Dan [2 ]
He, Dehua [2 ]
Hannam, Phillip [1 ]
Li, Guangtao [2 ]
机构
[1] Tongji Univ, State Key Lab Pollut Control & Resource Reuse, Coll Environm Sci & Engn, Shanghai 200092, Peoples R China
[2] Tsinghua Univ, Key Lab Organ Optoelect & Mol Engn, Dept Chem, Beijing 100084, Peoples R China
基金
美国国家科学基金会;
关键词
METAL-ORGANIC FRAMEWORK; ZEOLITIC IMIDAZOLATE FRAMEWORKS; MOLECULAR-SIEVE MEMBRANE; POLYMER SURFACES; CRYSTAL-GROWTH; SEPARATION; CU-3(BTC)(2); SELECTIVITY; CAPTURE; ALUMINA;
D O I
10.1039/c2jm32570e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Nanofibrous mats produced by electrospinning are ideal porous substrates for developing chemical systems due to their high specific surface area, large porosity, and enormous structural and chemical tunability. In this work, we report the fabrication of free-standing MOF membranes using electrospun nanofibrous mats as skeletons, and demonstrate the great potential of such nonwoven fiber mats as a new type of porous support in MOF research field. Direct deposition and seeded secondary growth approaches could be used to produce MOF materials within different nanofibrous skeletons, indicating that the developed method of generating MOF membranes has a remarkable flexibility. The characterizations performed show that the resulting products combine the unique properties of both electrospun nanofibers and MOFs, and can be regarded as a new class of hierarchically nanostructured functional materials.
引用
收藏
页码:16971 / 16978
页数:8
相关论文
共 50 条
  • [1] Electrospun nanofibrous mats as skeletons to produce MOF membranes for the detection of explosives
    Xu, Yunxia
    Wen, Yuquan
    Zhu, Wei
    Wu, Yi-nan
    Lin, Changxu
    Li, Guangtao
    MATERIALS LETTERS, 2012, 87 : 20 - 23
  • [2] Immunoassay on Free-Standing Electrospun Membranes
    Wu, Dapeng
    Han, Daewoo
    Steckl, Andrew J.
    ACS APPLIED MATERIALS & INTERFACES, 2010, 2 (01) : 252 - 258
  • [3] Construction of novel coaxial electrospun polyetherimide@polyaniline core-shell fibrous membranes as free-standing flexible electrodes for supercapacitors
    Wang, Lei
    Zhang, Chunhong
    Cao, Xianqi
    Xu, Xiaodong
    Bai, Jianwei
    Zhu, Jiahui
    Li, Ruiqi
    Satoh, Toshifumi
    JOURNAL OF POWER SOURCES, 2024, 602
  • [4] Fabrication of free-standing diamond membranes
    Salvadori, MC
    Cattani, M
    Mammana, V
    Monteiro, OR
    Ager, JW
    Brown, IG
    THIN SOLID FILMS, 1996, 290 : 157 - 160
  • [5] Confinement and transverse standing acoustic resonances in free-standing membranes
    Zhang, X
    Sooryakumar, R
    Bussmann, K
    PHYSICAL REVIEW B, 2003, 68 (11):
  • [6] Propagation of MinCDE waves on free-standing membranes
    Martos, Ariadna
    Petrasek, Zdenek
    Schwille, Petra
    ENVIRONMENTAL MICROBIOLOGY, 2013, 15 (12) : 3319 - 3326
  • [7] Free-Standing Silica Colloidal Nanoporous Membranes
    Bohaty, Andrew K.
    Smith, Joanna J.
    Zharov, Ilya
    LANGMUIR, 2009, 25 (05) : 3096 - 3101
  • [8] Fabrication and Characterization of Free-Standing Asymmetric Membranes
    Liu, Paige
    Zabala-Ferrera, Oscar
    Beltramo, Peter J.
    BIOPHYSICAL JOURNAL, 2021, 120 (03) : 39A - 40A
  • [9] Myoconductive and osteoinductive free-standing polysaccharide membranes
    Caridade, Sofia G.
    Monge, Claire
    Almodovar, Jorge
    Guillot, Raphael
    Lavaud, Jonathan
    Josserand, Veronique
    Coll, Jean-Luc
    Mano, Joao F.
    Picart, Catherine
    ACTA BIOMATERIALIA, 2015, 15 : 139 - 149
  • [10] Laser damage of free-standing nanometer membranes
    Morimoto, Yuya
    Roland, Iannis
    Rennesson, Stephanie
    Semond, Fabrice
    Boucaud, Philippe
    Baum, Peter
    JOURNAL OF APPLIED PHYSICS, 2017, 122 (21)