Laser damage of free-standing nanometer membranes

被引:6
|
作者
Morimoto, Yuya [1 ,2 ]
Roland, Iannis [3 ]
Rennesson, Stephanie [4 ]
Semond, Fabrice [4 ]
Boucaud, Philippe [3 ]
Baum, Peter [1 ,2 ]
机构
[1] Ludwig Maximilians Univ Munchen, Am Coulombwall 1, D-85748 Garching, Germany
[2] Max Planck Inst Quantum Opt, Hans Kopfermann Str 1, D-85748 Garching, Germany
[3] Univ Paris Saclay, Univ Paris Sud, CNRS, Ctr Nanosci & Nanotechnol, Batiment 220,Rue Andre Ampere, F-91405 Orsay, France
[4] Univ Cote Azur, CRHEA CNRS, Rue Bernard Gregory, F-06560 Valbonne, France
基金
欧洲研究理事会;
关键词
ELECTRON-MICROSCOPY; INDUCED BREAKDOWN; BAND-GAP; DYNAMICS; NANOSECOND; HARMONICS; PULSES; FIELD; BULK;
D O I
10.1063/1.5004081
中图分类号
O59 [应用物理学];
学科分类号
摘要
Many high-field/attosecond and ultrafast electron diffraction/microscopy experiments on condensed matter require samples in the form of free-standing membranes with nanometer thickness. Here, we report the measurement of the laser-induced damage threshold of 11 different free-standing nanometer-thin membranes of metallic, semiconducting, and insulating materials for 1-ps, 1030-nm laser pulses at 50 kHz repetition rate. We find a laser damage threshold that is very similar to each corresponding bulk material. The measurements also reveal a band gap dependence of the damage threshold as a consequence of different ionization rates. These results establish the suitability of free-standing nanometer membranes for high-field pump-probe experiments. Published by AIP Publishing.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Laser machining of free-standing silicon nitride membranes
    Xie, Xitong
    Nikbakht, Roghayeh
    Couillard, Martin
    St -Gelais, Raphael
    Weck, Arnaud
    [J]. JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2023, 318
  • [2] Immunoassay on Free-Standing Electrospun Membranes
    Wu, Dapeng
    Han, Daewoo
    Steckl, Andrew J.
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2010, 2 (01) : 252 - 258
  • [3] Fabrication of free-standing diamond membranes
    Salvadori, MC
    Cattani, M
    Mammana, V
    Monteiro, OR
    Ager, JW
    Brown, IG
    [J]. THIN SOLID FILMS, 1996, 290 : 157 - 160
  • [4] Transition from ballistic to electrodiffusive transport in free-standing nanometer-sized polymer membranes
    Schulze, Susanne
    Weitzel, Karl-Michael
    [J]. PHYSICAL REVIEW E, 2015, 92 (05):
  • [5] Confinement and transverse standing acoustic resonances in free-standing membranes
    Zhang, X
    Sooryakumar, R
    Bussmann, K
    [J]. PHYSICAL REVIEW B, 2003, 68 (11):
  • [6] Propagation of MinCDE waves on free-standing membranes
    Martos, Ariadna
    Petrasek, Zdenek
    Schwille, Petra
    [J]. ENVIRONMENTAL MICROBIOLOGY, 2013, 15 (12) : 3319 - 3326
  • [7] Myoconductive and osteoinductive free-standing polysaccharide membranes
    Caridade, Sofia G.
    Monge, Claire
    Almodovar, Jorge
    Guillot, Raphael
    Lavaud, Jonathan
    Josserand, Veronique
    Coll, Jean-Luc
    Mano, Joao F.
    Picart, Catherine
    [J]. ACTA BIOMATERIALIA, 2015, 15 : 139 - 149
  • [8] Fabrication and Characterization of Free-Standing Asymmetric Membranes
    Liu, Paige
    Zabala-Ferrera, Oscar
    Beltramo, Peter J.
    [J]. BIOPHYSICAL JOURNAL, 2021, 120 (03) : 39A - 40A
  • [9] Free-Standing Silica Colloidal Nanoporous Membranes
    Bohaty, Andrew K.
    Smith, Joanna J.
    Zharov, Ilya
    [J]. LANGMUIR, 2009, 25 (05) : 3096 - 3101
  • [10] Colloidal and electrostatic interactions in free-standing membranes
    Liu, Paige
    Zabala-Ferrera, Oscar
    Beltramo, Peter J.
    [J]. BIOPHYSICAL JOURNAL, 2022, 121 (03) : 173A - 173A