Non-homogeneous volatility correlations in the bivariate multifractal model

被引:7
|
作者
Liu, Ruipeng [1 ]
Lux, Thomas [2 ,3 ,4 ]
机构
[1] Deakin Univ, Sch Accounting Econ & Finance, Melbourne, Vic 3125, Australia
[2] Univ Kiel, Dept Econ, D-24118 Kiel, Germany
[3] Inst World Econ, D-24105 Kiel, Germany
[4] Univ Jaume 1, Banco Espana Chair Computat Econ, Castellon de La Plana, Spain
来源
EUROPEAN JOURNAL OF FINANCE | 2015年 / 21卷 / 12期
关键词
long memory; multifractal models; simulation-based inference; value-at-risk; C11; C13; G15; ASSET RETURNS; STOCK-MARKET; LONG-MEMORY; FORECASTING VOLATILITY; FRACTALITY; TESTS;
D O I
10.1080/1351847X.2014.897960
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
In this paper, we consider an extension of the recently proposed bivariate Markov-switching multifractal model of Calvet, Fisher, and Thompson [2006. Volatility Comovement: A Multifrequency Approach. Journal of Econometrics 131: 179-215]. In particular, we allow correlations between volatility components to be non-homogeneous with two different parameters governing the volatility correlations at high and low frequencies. Specification tests confirm the added explanatory value of this specification. In order to explore its practical performance, we apply the model for computing value-at-risk statistics for different classes of financial assets and compare the results with the baseline, homogeneous bivariate multifractal model and the bivariate DCC-GARCH of Engle [2002. Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models. Journal of Business & Economic Statistics 20 (3): 339-350]. As it turns out, the multifractal model with heterogeneous volatility correlations provides more reliable results than both the homogeneous benchmark and the DCC-GARCH model.
引用
收藏
页码:971 / 991
页数:21
相关论文
共 50 条
  • [1] A bivariate non-homogeneous birth and death model for predator-prey interactions
    Froda, Sorana
    Vanciu, Vasile
    STATISTICS & PROBABILITY LETTERS, 2013, 83 (11) : 2526 - 2530
  • [2] Volatility forecasting with bivariate multifractal models
    Liu, Ruipeng
    Demirer, Riza
    Gupta, Rangan
    Wohar, Mark
    JOURNAL OF FORECASTING, 2020, 39 (02) : 155 - 167
  • [3] A NON-HOMOGENEOUS COSMOLOGICAL MODEL
    OMER, GC
    ASTRONOMICAL JOURNAL, 1948, 54 (02): : 46 - 47
  • [4] A NON-HOMOGENEOUS COSMOLOGICAL MODEL
    OMER, GC
    PHYSICAL REVIEW, 1947, 72 (08): : 744 - 744
  • [5] Modelling volatility using a non-homogeneous martingale model for processes with constant mean on count data
    van den Broek, Jan
    STATISTICAL MODELLING, 2015, 15 (05) : 457 - 475
  • [6] DYNAMICS OF THE NON-HOMOGENEOUS SUPERMARKET MODEL
    MacPhee, I.
    Menshikov, M. V.
    Vachkovskaia, M.
    STOCHASTIC MODELS, 2012, 28 (04) : 533 - 556
  • [7] HMO CORRELATIONS WITH ELECTRONIC SPECTRA OF A LARGE NON-HOMOGENEOUS SERIES
    WOHL, AJ
    TETRAHEDRON, 1968, 24 (24) : 6889 - &
  • [8] HOMOGENEOUS AND NON-HOMOGENEOUS DUALITY
    PASHENKOV, VV
    RUSSIAN MATHEMATICAL SURVEYS, 1987, 42 (05) : 95 - 121
  • [9] A Non-Homogeneous Model for Kriging Dosimetric Data
    Lajaunie, Christian
    Renard, Didier
    Quentin, Alexis
    Le Guen, Vincent
    Caffari, Yvan
    MATHEMATICAL GEOSCIENCES, 2020, 52 (07) : 847 - 863
  • [10] Non-homogeneous Markov model with fault repair
    Zhou, Rui
    Xu, Renzuo
    Yang, Xiaoqing
    Xiaoxing Weixing Jisuanji Xitong/Mini-Micro Systems, 2000, 21 (03): : 242 - 245