Interactive modeling of surface waves and boundary layer

被引:0
|
作者
Chalikov, D [1 ]
机构
[1] NOAA, NWS, Ocean Modeling Branch, Natl Ctr Environm Predict, Camp Springs, MD 21746 USA
关键词
D O I
暂无
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
A new theoretical approach to investigate the nonlinear wave dynamics and wind-wave interaction is developed on a coupled model of wave boundary layer (WBL) and surface waves dynamics. WBL-model is based on the nonstatic Reynolds equations written in nonstationary conformal surface-following coordinate system in the 2-D domain above an arbitrary periodic moving surface which may be represented by a Fourier series. Closure scheme is based on a full turbulent energy evolution equation. Wave dynamics are simulated based of the equations for potential waves. The solutions for air and water components are coupled at each time step by assimilation of surface pressure (obtained from the boundary layer model) into wave model, and shape of the surface and surface velocity components (obtained from the wave model) into boundary layer model. The method developed may be applied to a broad range of wave dynamics and wind-wave interaction problems where the assumption of two-dimensionality is acceptable.
引用
收藏
页码:1525 / 1539
页数:3
相关论文
共 50 条
  • [31] Characteristics of the Marine Atmospheric Boundary Layer under the Influence of Ocean Surface Waves
    Liu, Changlong
    Li, Xinyu
    Song, Jinbao
    Zou, Zhongshui
    Huang, Jian
    Zhang, Jun A.
    Jie, Ganxin
    Wang, Jun
    [J]. JOURNAL OF PHYSICAL OCEANOGRAPHY, 2022, 52 (06) : 1261 - 1276
  • [32] ISEE PARTICLE OBSERVATIONS OF SURFACE-WAVES AT THE MAGNETOPAUSE BOUNDARY-LAYER
    COUZENS, D
    PARKS, GK
    ANDERSON, KA
    LIN, RP
    REME, H
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1985, 90 (NA7): : 6343 - 6353
  • [33] Statistical properties of the atmospheric turbulent boundary layer over steep surface waves
    Yu. I. Troitskaya
    D. A. Sergeev
    O. S. Ermakova
    G. N. Balandina
    [J]. Doklady Earth Sciences, 2010, 433 : 922 - 926
  • [34] Effect of rigid boundary on propagation of torsional surface waves in porous elastic layer
    S. Gupta
    A. Chattopadhyay
    D. K. Majhi
    [J]. Applied Mathematics and Mechanics, 2011, 32 : 327 - 338
  • [35] Effect of rigid boundary on propagation of torsional surface waves in porous elastic layer
    Gupta, S.
    Chattopadhyay, A.
    Majhi, D. K.
    [J]. APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2011, 32 (03) : 327 - 338
  • [36] The importance of surface layer parameterization in modeling of stable atmospheric boundary layers
    Tastula, Esa-Matti
    Galperin, Boris
    Sukoriansky, Semion
    Luhar, Ashok
    Anderson, Phil
    [J]. ATMOSPHERIC SCIENCE LETTERS, 2015, 16 (01): : 83 - 88
  • [37] Modeling of the vertical structure of the nocturnal boundary layer over a rough surface
    Kurbatskii A.F.
    Kurbatskaya L.I.
    [J]. Atmospheric and Oceanic Optics, 2009, 22 (2) : 173 - 179
  • [38] Numerical modeling of surface wave motion with a bottom turbulent boundary layer
    Jamali, Mirmosadegh
    [J]. Proceedings of the 24th International Conference on Offshore Mechanics and Arctic Engineering, Vol 3, 2005, : 923 - 926
  • [39] A boundary layer approach to creeping waves
    Matkowsky, B. J.
    [J]. APPLIED MATHEMATICS LETTERS, 2018, 86 : 320 - 325
  • [40] Global Interactive Boundary Layer (GIBL) for a channel
    Mauss, J.
    Dechaume, A.
    Cousteix, J.
    [J]. INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND MATHEMATICS, 2007, 1 (2-4) : 308 - 321