Nonlinear wave interaction in photonic band gap materials

被引:10
|
作者
Tkeshelashvili, Lasha
Niegemann, Jens
Pereira, Suresh
Busch, Kurt [1 ]
机构
[1] Univ Cent Florida, Dept Phys, Orlando, FL 32816 USA
[2] Univ Cent Florida, Coll Opt & Photon, CREOL, Orlando, FL 32816 USA
[3] Univ Cent Florida, FPCE, Orlando, FL 32816 USA
[4] Helmholtz Gemeinschaft, Forschungszentrum Karlsruhe, Inst Nanotechnol, D-76021 Karlsruhe, Germany
[5] Univ Karlsruhe, Inst Theorie Kondensierten Mat, D-76128 Karlsruhe, Germany
[6] Univ Karlsruhe, Inst Theor Festkorperphys, D-76128 Karlsruhe, Germany
[7] Univ Montpellier 2, UMR 5650, CNRS, Etud Semicond Grp, F-34095 Montpellier 5, France
基金
加拿大自然科学与工程研究理事会;
关键词
photonic crystals; gap soliton; nonlinear optics;
D O I
10.1016/j.photonics.2006.01.006
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We present detailed analytical and numerical studies of nonlinear wave interaction processes in one-diniensional (1D) photonic band gap (PBG) materials with a Kerr nonlinearity. We demonstrate that some of these processes provide efficient mechanisms for dynamically controlling so-called gap-solitons. We derive analytical expressions that accurately determine the phase shifts experienced by nonlinear waves for a large class of non-resonant interaction processes. We also present comprehensive numerical studies of inelastic interactions, and show that rather distinct regimes of interaction exist. The predicted effects should be experimentally observable, and can be utilized for probing the existence and parameters of gap solitons. Our results are directly applicable to other nonlinear periodic structures such as Bose-Einstein condensates in optical lattices. (c) 2006 Published by Elsevier B.V.
引用
收藏
页码:75 / 88
页数:14
相关论文
共 50 条
  • [21] Gap deformation and classical wave localization in disordered two-dimensional photonic-band-gap materials
    Lidorikis, E
    Sigalas, MM
    Economou, EN
    Soukoulis, CM
    PHYSICAL REVIEW B, 2000, 61 (20) : 13458 - 13464
  • [22] Six wave mixing process in photonic band gap
    Sun, Yanyong
    Mahesar, Abdul Rasheed
    Wang, Zhiguo
    Chen, Haixia
    Zhang, Yunzhe
    Gong, Rui
    Zhang, Yanpeng
    LASER PHYSICS, 2017, 27 (07)
  • [23] Superluminal propagation in plasma photonic band gap materials
    Ojha, S. P.
    Thapa, K. B.
    Singh, S. K.
    OPTIK, 2008, 119 (02): : 81 - 85
  • [24] PHOTONIC BAND GAP MATERIALS AND MONOLAYER SOLAR CELL
    Aly, Arafa H.
    Sayed, Hassan
    SURFACE REVIEW AND LETTERS, 2018, 25 (05)
  • [25] Photonic band gap materials: Technology, applications and challenges
    Johri, M.
    Ahmed, Y. A.
    Bezboruah, T.
    CURRENT SCIENCE, 2007, 92 (10): : 1361 - 1365
  • [26] Photonic band gap materials: fabrication, modeling, and applications
    Shklover, Valery
    Braginsky, Leonid
    ENABLING PHOTONICS TECHNOLOGIES FOR DEFENSE, SECURITY, AND AEROSPACE APPLICATIONS II, 2006, 6243
  • [27] Lattice Boltzmann model for photonic band gap materials
    Lin, ZF
    Fang, HP
    Xu, JJ
    Zi, J
    Zhang, XD
    PHYSICAL REVIEW E, 2003, 67 (02):
  • [28] Versatile photonic band gap materials for water desalination
    Sayed, Hassan
    Krauss, Thomas F.
    Aly, Arafa H.
    OPTIK, 2020, 219
  • [29] Photonic band gap materials for devices in the microwave domain
    Gadot, F
    Ammouche, A
    de Lustrac, A
    Chelnokov, A
    Bouillault, F
    Crozat, P
    Lourtioz, JM
    IEEE TRANSACTIONS ON MAGNETICS, 1998, 34 (05) : 3028 - 3031
  • [30] Theory and applications of photonic band-gap materials
    Yang, HYD
    ELECTROMAGNETICS, 1999, 19 (03) : 223 - 224