Magnetoconvection transient dynamics by numerical simulation

被引:4
|
作者
de Vaux, Sebastien Renaudiere [1 ,2 ]
Zamansky, Remi [1 ]
Bergez, Wladimir [1 ]
Tordjeman, Philippe [1 ]
Haquet, Jean-Francois [2 ]
机构
[1] Univ Toulouse, CNRS, INPT, IMFT,UPS, Toulouse, France
[2] CEA, DEN, Cadarache, SMTA,LPMA, F-13108 St Paul Les Durance, France
来源
EUROPEAN PHYSICAL JOURNAL E | 2017年 / 40卷 / 01期
关键词
RAYLEIGH-BENARD CONVECTION; THERMAL CONVECTION; INHIBITION; CHAOS;
D O I
10.1140/epje/i2017-11499-2
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Fluorination is widely used to improve the resistance and physical properties of polymers that are cheap to manufacture. This process improves the resistance properties of unfluorinated materials. This study examines the effects of varying the degree of fluorination on the clustering and absorption behaviour of methane n-eicosane. Monte Carlo simulations were performed for several different pressure values, at ambient temperature, to determine the uptake of methane into the eicosanes. The density of the pure eicosanes, simulated at ambient conditions, compared favourably with experimental data for the relevant polymers. The spatial configurations resulting from the absorption simulations were analysed to determine the clustering behaviour of absorbed methane. Both the prevalence of cluster formation in general, and the occurrence of specific cluster topologies of various sizes were considered. Cyclic clusters had a tendency to become more prevalent in unfluorinated eicosanes as the gas pressure was increased, while the presence of fluorine atoms on the eicosane backbone appeared to inhibit the formation of such clusters.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Magnetoconvection transient dynamics by numerical simulation
    Sébastien Renaudière de Vaux
    Rémi Zamansky
    Wladimir Bergez
    Philippe Tordjeman
    Jean-François Haquet
    [J]. The European Physical Journal E, 2017, 40
  • [2] Numerical simulation of solar magnetoconvection with realistic physics
    Ustyugov, Sergey D.
    [J]. Fifty Years of Romanian Astrophysics, 2007, 895 : 109 - 114
  • [3] Simulation of solar magnetoconvection
    Voegler, A.
    Shelyag, S.
    Schuessler, M.
    Cattaneo, F.
    Emonet, T.
    Linde, T.
    [J]. Modelling of Stellar Atmospheres, 2003, 210 : 157 - 167
  • [4] THE DYNAMICS OF STEADY HEXAGONAL MAGNETOCONVECTION
    MURPHY, JO
    LOPEZ, JM
    [J]. AUSTRALIAN JOURNAL OF PHYSICS, 1985, 38 (01): : 41 - 62
  • [5] Numerical simulation on the evolution of transient cavities
    Cai, Yuebin
    Lu, Chuanjing
    He, Yousheng
    [J]. Ying Yong Li Xue Xue Bao/Chinese Journal of Applied Mechanics, 1997, 14 (01): : 1 - 6
  • [6] NUMERICAL SIMULATION OF TRANSIENT TEMPERATURE IN SMAW
    Panwala, M. Sohel M.
    Channiwala, S. A.
    Srinivasan, K. N.
    [J]. PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE, VOL 6, PTS A AND B, 2010, : 449 - 456
  • [7] Transient numerical simulation of Bridgman method
    Zhang, Hai-Bin
    Chen, Wen-Bin
    Shen, Ding-Zhong
    Ren, Guo-Hao
    [J]. Rengong Jingti Xuebao/Journal of Synthetic Crystals, 2003, 32 (06):
  • [8] Numerical simulation of transient processes in hydroturbines
    A. Yu. Avdyushenko
    S. G. Cherny
    D. V. Chirkov
    V. A. Skorospelov
    P. A. Turuk
    [J]. Thermophysics and Aeromechanics, 2013, 20 : 577 - 593
  • [9] Numerical simulation of transient processes in hydroturbines
    Avdyushenko, A. Yu
    Cherny, S. G.
    Chirkov, D. V.
    Skorospelov, V. A.
    Turuk, P. A.
    [J]. THERMOPHYSICS AND AEROMECHANICS, 2013, 20 (05) : 577 - 593
  • [10] Simulation and transient testing of numerical relays
    Agrasar, M
    Hernández, JR
    Uriondo, F
    [J]. IEEE COMPUTER APPLICATIONS IN POWER, 2002, 15 (04): : 57 - 62