Identifiability and excitation of linearly parametrized rational systems

被引:9
|
作者
Gevers, Michel [1 ]
Bazanella, Alexandre S. [2 ]
Coutinho, Daniel F. [3 ]
Dasgupta, Soura [4 ]
机构
[1] Univ Louvain, ICTEAM, B-1348 Louvain La Neuve, Belgium
[2] Univ Fed Rio Grande do Sul, Dept Automat & Energy, BR-90046900 Porto Alegre, RS, Brazil
[3] Univ Fed Santa Catarina, Dept Automat & Syst, Florianopolis, SC, Brazil
[4] Univ Iowa, Dept Elect & Comp Engn, Iowa City, IA 52242 USA
基金
美国国家科学基金会;
关键词
System identification; Nonlinear deterministic systems; Identifiability; Informative experiments; TIME ADAPTIVE-CONTROL; BILINEAR-SYSTEMS; CONVERGENCE; PERSISTENCY; RICHNESS; STATE;
D O I
10.1016/j.automatica.2015.10.028
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper establishes identifiability and informativity conditions for a class of deterministic linearly parametrized scalar rational models. The class considered is rational in the state and polynomial in the input. The standard definitions of identifiability and informativity for linear systems are expanded to account for the situation, common for nonlinear deterministic systems, where the identification is achieved either through the application of an informative input or via the response to an informative initial condition. We provide necessary and sufficient conditions for identifiability from the initial state, respectively from the input, as well as necessary and sufficient conditions on the initial state to produce an informative experiment. We also provide sufficient conditions on the input to be informative when the initial condition is unknown and could therefore potentially destroy the transfer of information from the input to the regressor. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:38 / 46
页数:9
相关论文
共 50 条
  • [41] On the identifiability of bilinear stochastic systems
    Bourin, C
    Bondon, P
    PROCEEDINGS OF THE IEEE SIGNAL PROCESSING WORKSHOP ON HIGHER-ORDER STATISTICS, 1997, : 176 - 180
  • [42] Blind identifiability of IIR systems
    Bai, EW
    Li, QY
    Dasgupta, S
    AUTOMATICA, 2002, 38 (01) : 181 - 184
  • [43] THE IDENTIFIABILITY OF PARTIALLY OBSERVABLE SYSTEMS
    KUZNETSOV, NA
    IASHIN, AI
    DOKLADY AKADEMII NAUK SSSR, 1981, 259 (04): : 790 - 792
  • [44] Identifiability of open quantum systems
    Burgarth, Daniel
    Yuasa, Kazuya
    PHYSICAL REVIEW A, 2014, 89 (03):
  • [45] IDENTIFIABILITY OF LINEAR STATE SYSTEMS
    WALTER, E
    LECARDINAL, G
    BERTRAND, P
    MATHEMATICAL BIOSCIENCES, 1976, 31 (1-2) : 131 - 141
  • [46] Identifiability of linear dynamic systems
    Paraev, Y.I.
    Tsvetnitskaya, S.A.
    Izvestiya Akademii Nauk. Teoriya i Sistemy Upravleniya, 1992, (04):
  • [47] A Necessary Condition for Network Identifiability With Partial Excitation and Measurement
    Cheng, Xiaodong
    Shi, Shengling
    Lestas, Ioannis
    Van den Hof, Paul M. J.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2023, 68 (11) : 6820 - 6827
  • [48] On the algebraic identifiability of finite impulse response channels driven by linearly precoded signals
    Manton, JH
    Neumann, WD
    Norbury, PT
    SYSTEMS & CONTROL LETTERS, 2005, 54 (02) : 125 - 134
  • [49] IDENTIFIABILITY OF DYNAMIC-SYSTEMS
    THOWSEN, A
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 1978, 9 (07) : 813 - 825
  • [50] IDENTIFIABILITY PROBLEMS IN COHERENT SYSTEMS
    NOWIK, S
    JOURNAL OF APPLIED PROBABILITY, 1990, 27 (04) : 862 - 872