Hindman's theorem, ultrafilters. and reverse mathematics

被引:9
|
作者
Hirst, JL [1 ]
机构
[1] Appalachian State Univ, Dept Math Sci, Boone, NC 28608 USA
关键词
Hindman's theorem; Milliken's theorem; reverse mathematics; computability;
D O I
10.2178/jsl/1080938825
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Assuming CH. Hindman [2] showed that the existence of certain ultrafilters on the power set of the natural numbers is equivalent to Hindman's Theorem. Adapting this work to a countable setting formalized in RCA(0). this article proves the equivalence of the existence of certain Ultrafilters on countable Boolean algebras and an iterated form of Hindman's Theorem. which is closely related to Milliken's Theorem. A computable restriction of Hindman's Theorem follows as a corollary.
引用
收藏
页码:65 / 72
页数:8
相关论文
共 50 条
  • [1] ARROW'S THEOREM, ULTRAFILTERS, AND REVERSE MATHEMATICS
    Eastaugh, Benedict
    REVIEW OF SYMBOLIC LOGIC, 2024,
  • [2] The reverse mathematics of Hindman's Theorem for sums of exactly two elements
    Csima, Barbara F.
    Dzhafarov, Damir D.
    Hirschfeldt, Denis R.
    Jockusch, Carl G., Jr.
    Solomon, Reed
    Westrick, Linda Brown
    COMPUTABILITY-THE JOURNAL OF THE ASSOCIATION CIE, 2019, 8 (3-4): : 253 - 263
  • [3] Ultrafilters in reverse mathematics
    Towsner, Henry
    JOURNAL OF MATHEMATICAL LOGIC, 2014, 14 (01)
  • [4] New simple ultrafilters.
    Ostwald, W
    KOLLOID-ZEITSCHRIFT, 1918, 22 (02): : 72 - 76
  • [5] On the utility of Robinson–Amitsur ultrafilters. III
    Pasha Zusmanovich
    Periodica Mathematica Hungarica, 2022, 85 : 399 - 404
  • [6] Hindman’s theorem and choice
    E. Tachtsis
    Acta Mathematica Hungarica, 2022, 168 : 402 - 424
  • [7] HINDMAN'S THEOREM AND CHOICE
    Tachtsis, E.
    ACTA MATHEMATICA HUNGARICA, 2022, 168 (02) : 402 - 424
  • [8] Restrictions of Hindman's Theorem: An Overview
    Carlucci, Lorenzo
    CONNECTING WITH COMPUTABILITY, 2021, 12813 : 94 - 105
  • [9] Hindman's theorem and idempotent types
    Andrews, Uri
    Goldbring, Isaac
    SEMIGROUP FORUM, 2018, 97 (03) : 471 - 477
  • [10] Regressive versions of Hindman's theorem
    Carlucci, Lorenzo
    Mainardi, Leonardo
    ARCHIVE FOR MATHEMATICAL LOGIC, 2024, 63 (3-4) : 447 - 472