splines;
entire functions of exponential type;
limit theorems;
D O I:
10.1016/j.jmaa.2005.05.020
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
In this paper we establish new asymptotic relations of the form [graphics] where E(f, S(h),m, L(p)(R)) and E(f, B(pi/h), L(p)(R)) are the errors of best approximation of a function in L(p)(R), 1 <= p <= infinity, by splines of order m with breakpoints {kh}(k=-infinity)(infinity) functions of exponential type pi/h, respectively. Approximation and interpolation of entire functions of exponential type by splines of high order is discussed as well. (c) 2005 Elsevier Inc. All rights reserved.
机构:
Catholic Univ Louvain, Inst Stat Biostat & Sci Actuarielles, Voie Roman Pays 20,B1348, Louvain La Neuve, BelgiumCatholic Univ Louvain, Inst Stat Biostat & Sci Actuarielles, Voie Roman Pays 20,B1348, Louvain La Neuve, Belgium
Simar, Leopold
Zelenyuk, Valentin
论文数: 0引用数: 0
h-index: 0
机构:
Univ Queensland, Sch Econ, Colin Clark Bldg 39, Brisbane, Qld 4072, Australia
Univ Queensland, Ctr Efficiency & Prod Anal CEPA, Colin Clark Bldg 39, Brisbane, Qld 4072, AustraliaCatholic Univ Louvain, Inst Stat Biostat & Sci Actuarielles, Voie Roman Pays 20,B1348, Louvain La Neuve, Belgium
Zelenyuk, Valentin
Zhao, Shirong
论文数: 0引用数: 0
h-index: 0
机构:
Dongbei Univ Finance & Econ, Sch Finance, Dalian 116025, Liaoning, Peoples R ChinaCatholic Univ Louvain, Inst Stat Biostat & Sci Actuarielles, Voie Roman Pays 20,B1348, Louvain La Neuve, Belgium