Creep-fatigue life assessment of cruciform weldments using the linear matching method

被引:28
|
作者
Gorash, Yevgen [1 ]
Chen, Haofeng [1 ]
机构
[1] Univ Strathclyde, Dept Mech & Aerosp Engn, Glasgow G1 1XJ, Lanark, Scotland
基金
英国工程与自然科学研究理事会;
关键词
Creep; Damage; Finite element analysis; FSRF; Low-cycle fatigue; Type; 316; steel; Weldment; R5; PROCEDURES; BEHAVIOR;
D O I
10.1016/j.ijpvp.2012.12.003
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper presents a creep-fatigue life assessment of a cruciform weldment made of the steel AISI type 316N(L) and subjected to reversed bending and cyclic dwells at 550 degrees C using the Linear Matching Method (LMM) and considering different weld zones. The design limits are estimated by the shakedown analysis using the LMM and elastic-perfectly-plastic material model. The creep-fatigue analysis is implemented using the following material models: 1) Ramberg-Osgood model for plastic strains under saturated cyclic conditions; 2) power-law model in "time hardening" form for creep strains during primary creep stage. The number of cycles to failure N-star under creep-fatigue interaction is defined by: a) relation for cycles to fatigue failure N* dependent on numerical total strain range Delta epsilon(tot) for the fatigue damage omega(f); b) long-term strength relation for the time to creep rupture t* dependent on numerical average stress (sigma) over bar during dwell Delta t for the creep damage omega(cr); c) non-linear creep-fatigue interaction diagram for the total damage. Numerically estimated N-star for different Delta t and Delta epsilon(tot) shows good quantitative agreement with experiments. A parametric study of different dwell times Delta t is used to formulate the functions for N-star and residual life L-star dependent on Delta t and normalised bending moment (M) over tilde, and the corresponding contour plot intended for design applications is created. (c) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 50 条
  • [21] THE EFFECT OF CREEP CAVITATION ON THE FATIGUE LIFE UNDER CREEP-FATIGUE INTERACTION
    NAM, SW
    LEE, SC
    LEE, JM
    NUCLEAR ENGINEERING AND DESIGN, 1995, 153 (2-3) : 213 - 221
  • [22] A deep learning based life prediction method for components under creep, fatigue and creep-fatigue conditions
    Zhang, Xiao-Cheng
    Gong, Jian-Guo
    Xuan, Fu-Zhen
    INTERNATIONAL JOURNAL OF FATIGUE, 2021, 148
  • [23] Linear matching method for creep rupture assessment
    Chen, HF
    Engelhardt, MJ
    Ponter, ARS
    INTERNATIONAL JOURNAL OF PRESSURE VESSELS AND PIPING, 2003, 80 (04) : 213 - 220
  • [24] A nondestructive life evaluation using creep-fatigue damage by SDA
    Kim, BJ
    Lim, BS
    Song, SJ
    ADVANCES IN SAFETY AND STRUCTURAL INTEGRITY 2005, 2006, 110 : 105 - 110
  • [25] Creep rupture assessment by a robust creep data interpolation using the Linear Matching Method
    Barbera, Daniele
    Chen, Haofeng
    EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2015, 54 : 267 - 279
  • [26] A METHOD OF CREEP DAMAGE SUMMATION BASED ON ACCUMULATED STRAIN FOR THE ASSESSMENT OF CREEP-FATIGUE ENDURANCE
    HALES, R
    FATIGUE OF ENGINEERING MATERIALS AND STRUCTURES, 1983, 6 (02): : 121 - 135
  • [27] Creep-fatigue damage assessment by subsequent fatigue straining
    Yaguchi, M
    Nakamura, T
    Ishikawa, A
    Asada, Y
    NUCLEAR ENGINEERING AND DESIGN, 1996, 162 (01) : 97 - 106
  • [28] Study on life prediction method for creep-fatigue interaction at elevated temperature
    Chen, Nianjin
    Gao, Zengliang
    Zhang, Wei
    Le, Yuebao
    PROGRESSES IN FRACTURE AND STRENGTH OF MATERIALS AND STRUCTURES, 1-4, 2007, 353-358 : 190 - 194
  • [29] Creep-fatigue life evaluation method for perforated mates at elevated temperature
    Watanabe, O
    Koike, T
    JOURNAL OF PRESSURE VESSEL TECHNOLOGY-TRANSACTIONS OF THE ASME, 2006, 128 (01): : 17 - 24
  • [30] EVALUATION METHOD OF CREEP-FATIGUE LIFE FOR 316FR WELDMENT
    Nagae, Yuji
    Yamamoto, Kenji
    Otani, Tomomi
    ASME PRESSURE VESSELS AND PIPING CONFERENCE - 2015, VOL 6A, 2015,