Characterisation of plasma breakdown at JET with a carbon and ITER-like wall

被引:37
|
作者
de Vries, P. C. [1 ]
Sips, A. C. C. [2 ,3 ]
Kim, H. T. [4 ,5 ]
Lomas, P. J. [4 ]
Maviglia, F. [6 ]
Albanese, R. [6 ]
Coffey, I. [7 ]
Joffrin, E. [8 ]
Lehnen, M. [9 ]
Manzanares, A. [10 ]
O'Mulane, M. [4 ]
Nunes, I. [2 ,11 ]
van Rooij, G. [1 ]
Rimini, F. G. [4 ]
Stamp, M. F. [4 ]
机构
[1] EURATOM, FOM Inst DIFFER, NL-3430 BE Nieuwegein, Netherlands
[2] European Commiss, Brussels, Belgium
[3] Culham Sci Ctr, EFDA CSU, Abingdon OX14 3DB, Oxon, England
[4] EURATOM, Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England
[5] Univ London Imperial Coll Sci Technol & Med, Dept Phys, London SW7 2AZ, England
[6] Univ Naples Federico II, Assoc EURATOM ENEA CREATE, Naples, Italy
[7] Queens Univ Belfast, Dept Math & Phys, Belfast BT7 1NN, Antrim, North Ireland
[8] Assoc Euratom CEA, CEA IRFM, F-13108 Cadarache, France
[9] Forschungszentrum Julich, EURATOM Assoc, Inst Energie & Klimatforsch IEK 4, D-52425 Julich, Germany
[10] EURATOM CIEMAT Assoc, Lab Nacl Fus, Madrid, Spain
[11] Assoc EURATOM IST, Inst Plasmas & Fusao Nucl, Lisbon, Portugal
关键词
DIII-D; STARTUP;
D O I
10.1088/0029-5515/53/5/053003
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The recent installation of a full metal, ITER-like, first wall provided the opportunity to study the impact of the plasma-facing materials on plasma initiation or breakdown. This study for the first time presents a full experimental characterisation of tokamak breakdown at JET, using all discharges since 2008, covering both operations with a main chamber carbon and a beryllium ITER-like main chamber wall. It was found that the avalanche phase was unaffected by the change in wall material. However, changes in out-gassing by the wall and lower carbon levels resulted in better controlled density and significantly lower radiation during the burn-through phase with the ITER-like wall. Breakdown failures, that usually developed with a carbon wall during the burn-through phase (especially after disruptions) were absent with the ITER-like wall. These observations match with the results obtained from a new model of plasma burn-through that includes plasma-surface interactions (Kim et al 2012 Nucl. Fusion 52 103016). This shows that chemical sputtering of carbon is the determining factor for the impurity content, and hence also radiation, during the burn-through phase for operations with a carbon wall. As seen experimentally, with a beryllium main wall, the plasma surface effects predicted by the model do not raise the radiation levels much above those expected for pure deuterium plasmas. With the ITER-like wall, operation with higher pre-fill pressures, and thus higher breakdown densities, was possible, which helped maintaining the density after breakdown.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Characterising dust in JET with the new ITER-like wall
    Flanagan, J. C.
    Sertoli, M.
    Bacharis, M.
    Matthews, G. F.
    de Vries, P. C.
    Widdowson, A.
    Coffey, I. H.
    Arnoux, G.
    Sieglin, B.
    Brezinsek, S.
    Coenen, J. W.
    Marsen, S.
    Craciunescu, T.
    Murari, A.
    Harting, D.
    Cackett, A.
    Hodille, E.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2015, 57 (01)
  • [32] The second phase of JET operation with the ITER-like wall
    Matthews, G. F.
    Brezinsek, S.
    Chapman, I.
    Hobirk, J.
    Horton, L. D.
    Maggi, C.
    Nunes, I.
    Rimini, F. G.
    Sips, G.
    de Vries, P.
    PHYSICA SCRIPTA, 2014, T159
  • [33] Impact and mitigation of disruptions with the ITER-like wall in JET
    Lehnen, M.
    Arnoux, G.
    Brezinsek, S.
    Flanagan, J.
    Gerasimov, S. N.
    Hartmann, N.
    Hender, T. C.
    Huber, A.
    Jachmich, S.
    Kiptily, V.
    Kruezi, U.
    Matthews, G. F.
    Morris, J.
    Plyusnin, V. V.
    Reux, C.
    Riccardo, V.
    Sieglin, B.
    de Vries, P. C.
    NUCLEAR FUSION, 2013, 53 (09)
  • [34] Current status of the JET ITER-like Wall Project
    Matthews, G. F.
    Edwards, P.
    Greuner, H.
    Loving, A.
    Maier, H.
    Mertens, Ph
    Philipps, V.
    Riccardo, V.
    Rubel, M.
    Ruset, C.
    Scmidt, A.
    Villedieu, E.
    PHYSICA SCRIPTA, 2009, T138
  • [35] Overview of experimental preparation for the ITER-Like Wall at JET
    Brezinsek, S.
    Fundamenski, W.
    Eich, T.
    Coad, J. P.
    Giroud, C.
    Huber, A.
    Jachmich, S.
    Joffrin, E.
    Krieger, K.
    McCormick, K.
    Lehnen, M.
    Loarer, T.
    de la Luna, E.
    Maddison, G.
    Matthews, G. F.
    Mertens, Ph.
    Nunes, I.
    Philipps, V.
    Riccardo, V.
    Rubel, M.
    Stamp, M. F.
    Tsalas, M.
    JOURNAL OF NUCLEAR MATERIALS, 2011, 415 (01) : S936 - S942
  • [36] Overview of LH Experiments In JET with an ITER-Like Wall
    Kirov, K. K.
    Baranov, Yu.
    Barbato, E.
    Brix, M.
    Corrigan, G.
    Ekedahl, A.
    Goniche, M.
    Mailloux, J.
    Petrzilka, V.
    Rimini, F.
    Stamp, M.
    RADIOFREQUENCY POWER IN PLASMAS, 2014, 1580 : 390 - 393
  • [37] Testing of tungsten coatings in JET for the ITER-like wall
    Coad, J. P.
    Hole, D. E.
    Kolodinska, E.
    Likonen, J.
    Lindig, S.
    Matthews, G. F.
    Mayer, M.
    Philipps, V.
    Riccardo, V.
    Widdowson, A.
    JOURNAL OF NUCLEAR MATERIALS, 2009, 390-91 : 992 - 995
  • [38] Tungsten coatings for the JET ITER-like wall project
    Maier, H.
    Neu, R.
    Greuner, H.
    Hopf, Ch.
    Matthews, G. F.
    Piazza, G.
    Hirai, T.
    Counsell, G.
    Courtois, X.
    Mitteau, R.
    Gauthier, E.
    Likonen, J.
    Maddaluno, G.
    Philipps, V.
    Riccardi, B.
    Ruset, C.
    JOURNAL OF NUCLEAR MATERIALS, 2007, 363 (1-3) : 1246 - 1250
  • [39] The JET ITER-like wall experiment: First results and lessons for ITER
    Horton, Lorne
    FUSION ENGINEERING AND DESIGN, 2013, 88 (6-8) : 434 - 439
  • [40] Deposition in the inner and outer corners of the JET divertor with carbon wall and metallic ITER-like wall
    Beal, J.
    Widdowson, A.
    Heinola, K.
    Baron-Wiechec, A.
    Gibson, K. J.
    Coad, J. P.
    Alves, E.
    Lipschultz, B.
    Kirschner, A.
    Esser, H. G.
    Matthews, G. F.
    Brezinsek, S.
    Abhangi, M.
    Abreu, P.
    Aftanas, M.
    Afzal, M.
    Aggarwal, K. M.
    Aho-Mantila, L.
    Ahonen, E.
    Aints, M.
    Airila, M.
    Albanese, R.
    Alegre, D.
    Alessi, E.
    Aleynikov, P.
    Alfier, A.
    Alkseev, A.
    Allan, P.
    Almaviva, S.
    Alonso, A.
    Alper, B.
    Alsworth, I.
    Alves, D.
    Ambrosino, G.
    Ambrosino, R.
    Amosov, V.
    Andersson, F.
    Andersson Sunden, E.
    Angelone, M.
    Anghel, A.
    Anghel, M.
    Angioni, C.
    Appel, L.
    Apruzzese, G.
    Arena, P.
    Ariola, M.
    Arnichand, H.
    Arnoux, G.
    Arshad, S.
    Ash, A.
    PHYSICA SCRIPTA, 2016, T167