Multiplication operators on non-commutative spaces

被引:4
|
作者
de Jager, P. [1 ]
Labuschagne, L. E. [1 ]
机构
[1] NWU, Unit BMI, DST NRF CoE Math & Stat Sci, Sch Comp Stat & Math Sci, Internal Box 209,PVT BAG X6001, ZA-2520 Potchefstroom, South Africa
基金
新加坡国家研究基金会;
关键词
Orlicz space; Non-commutative; Semi-finite; Multiplication operator; Bounded; Compact;
D O I
10.1016/j.jmaa.2019.03.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Boundedness and compactness properties of multiplication operators on quantum (non-commutative) function spaces are investigated. For endomorphic multiplication operators these properties can be characterized in the setting of quantum symmetric spaces. For non-endomorphic multiplication operators these properties can be completely characterized in the setting of quantum L-p-spaces and a partial solution obtained in the more general setting of quantum Orlicz spaces. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:874 / 894
页数:21
相关论文
共 50 条
  • [21] Maps between non-commutative spaces
    Smith, SP
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 356 (07) : 2927 - 2944
  • [22] Hypercontractivity in non-commutative holomorphic spaces
    Kemp, T
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 259 (03) : 615 - 637
  • [23] Hypercontractivity in Non-Commutative Holomorphic Spaces
    Todd Kemp
    Communications in Mathematical Physics, 2005, 259 : 615 - 637
  • [24] Twisting non-commutative Lp spaces
    Cabello Sanchez, Felix
    Castillo, Jesus M. F.
    Goldstein, Stanislaw
    Suarez de la Fuente, Jesus
    ADVANCES IN MATHEMATICS, 2016, 294 : 454 - 488
  • [25] Non-commutative Banach function spaces
    de Pagter, Ben
    POSITIVITY, 2007, : 197 - +
  • [26] Embeddings of lp into non-commutative spaces
    Randrianantoanina, N
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2003, 74 : 331 - 350
  • [27] GLUING NON-COMMUTATIVE TWISTOR SPACES
    Marcolli, Matilde
    Penrose, Roger
    QUARTERLY JOURNAL OF MATHEMATICS, 2021, 72 (1-2): : 417 - 454
  • [28] ASYMPTOTIC FORMULA FOR NORMAL OPERATORS IN NON-COMMUTATIVE L2-SPACES
    JAJTE, R
    LECTURE NOTES IN MATHEMATICS, 1989, 1396 : 270 - 278
  • [29] THE NON-COMMUTATIVE HARDY-LITTLEWOOD MAXIMAL OPERATOR ON NON-COMMUTATIVE LORENTZ SPACES
    Bekbayev, N. T.
    Tulenov, K. S.
    JOURNAL OF MATHEMATICS MECHANICS AND COMPUTER SCIENCE, 2020, 106 (02): : 31 - 38
  • [30] Extensions of Nazarov-Podkorytov lemma in non-commutative spaces of τ-measurable operators
    Dauitbek, D.
    Tulenov, K. S.
    POSITIVITY, 2024, 28 (01)