Dominant role of ammonia-oxidizing bacteria in nitrification due to ammonia accumulation in sediments of Danjiangkou reservoir, China

被引:35
|
作者
Dang, Chenyuan [1 ]
Liu, Wen [1 ,2 ]
Lin, Yaxuan [1 ]
Zheng, Maosheng [3 ]
Jiang, Huan [1 ]
Chen, Qian [1 ]
Ni, Jinren [1 ]
机构
[1] Peking Univ, Minist Educ, Key Lab Water & Sediment Sci, Coll Environm Sci & Engn, Beijing 100871, Peoples R China
[2] Georgia Inst Technol, Sch Civil & Environm Engn, Atlanta, GA 30332 USA
[3] North China Elect Power Univ, Sino Canada Resources & Environm Res Acad, MOE Key Lab Reg Energy Syst Optimizat, Beijing 102206, Peoples R China
基金
中国国家自然科学基金;
关键词
Ammonia-oxidizing archaea; Ammonia-oxidizing bacteria; Nitrification; Sediments; Danjiangkou reservoir; WATER DIVERSION PROJECT; MESOPHILIC CRENARCHAEOTA; COMMUNITY STRUCTURE; ARCHAEA; OXIDATION; NITROGEN; ABUNDANCE; RIVER; AMOA; TEMPERATURE;
D O I
10.1007/s00253-018-8865-0
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Surface sediments are the inner source of contaminations in aquatic systems and usually maintain aerobic conditions. As the key participators of nitrification process, little is known about the activities and contributions of ammonia-oxidizing archaea (AOA) and bacteria (AOB) in the surface sediments. In this study, we determined the net and potential nitrification rates and used 1-octyne as an AOB specific inhibitor to detect the contributions of AOA and AOB to nitrification in surface sediments of Danjiangkou reservoir, which is the water source area of the middle route of South-to-North Water Diversion Project in China. Quantitative PCR and Illumina high-throughput sequencing were used to evaluate the abundance and diversity of the amoA gene. The net and potential nitrification rates ranged from 0.42 to 1.93 and 2.06 to 8.79 mg N kg(-1) dry sediments d(-1), respectively. AOB dominated in both net and potential nitrification, whose contribution accounted for 52.7-78.6% and 59.9-88.1%, respectively. The cell-specific ammonia oxidation rate calculation also revealed the cell-specific rates of AOB were higher than that of AOA. The Spearman's rank correlation analysis suggested that ammonia accumulation led to the AOB predominant role in net nitrification activity, and AOB abundance played the key role in potential nitrification activity. Furthermore, phylogenetic analysis suggested AOB were predominantly characterized by the Nitrosospira cluster, while AOA by the Nitrososphaera and Nitrososphaera sister clusters. This study will help us to better understand the contributions and characteristics of AOA and AOB in aquatic sediments and provide improved strategies for nitrogen control in large reservoirs.
引用
收藏
页码:3399 / 3410
页数:12
相关论文
共 50 条
  • [31] Partial nitrification using an electrolytic aerating bioreactor with ammonia-oxidizing bacteria-dominant activated sludge
    Soojeong Shin
    Suk Soon Choi
    Young Je Yoo
    Biotechnology Letters, 2011, 33 : 699 - 703
  • [32] Copper induces nitrification by ammonia-oxidizing bacteria and archaea in pastoral soils
    Matse, Dumsane Themba
    Jeyakumar, Paramsothy
    Bishop, Peter
    Anderson, Christopher W. N.
    JOURNAL OF ENVIRONMENTAL QUALITY, 2023, 52 (01) : 49 - 63
  • [33] Contributions of ammonia-oxidizing archaea and bacteria to nitrification in Oregon forest soils
    Lu, Xinda
    Bottomley, Peter J.
    Myrold, David D.
    SOIL BIOLOGY & BIOCHEMISTRY, 2015, 85 : 54 - 62
  • [34] Partial nitrification using an electrolytic aerating bioreactor with ammonia-oxidizing bacteria-dominant activated sludge
    Shin, Soojeong
    Choi, Suk Soon
    Yoo, Young Je
    BIOTECHNOLOGY LETTERS, 2011, 33 (04) : 699 - 703
  • [35] Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils
    Li-Mei Zhang
    Hang-Wei Hu
    Ju-Pei Shen
    Ji-Zheng He
    The ISME Journal, 2012, 6 : 1032 - 1045
  • [36] Ammonia-Oxidizing Archaea Dominate Ammonia-Oxidizing Communities within Alkaline Cave Sediments
    Zhao, Rui
    Wang, Hongmei
    Yang, Huan
    Yun, Yuan
    Barton, Hazel A.
    GEOMICROBIOLOGY JOURNAL, 2017, 34 (06) : 511 - 523
  • [37] Distribution patterns of ammonia-oxidizing archaea and bacteria in sediments of the eastern China marginal seas
    Liu, Yuyang
    Liu, Jiwen
    Yao, Peng
    Ge, Tiantian
    Qiao, Yanlu
    Zhao, Meixun
    Zhang, Xiao-Hua
    SYSTEMATIC AND APPLIED MICROBIOLOGY, 2018, 41 (06) : 658 - 668
  • [38] Ammonia-Oxidizing Bacteria Dominates Over Ammonia-Oxidizing Archaea in a Saline Nitrification Reactor Under Low DO and High Nitrogen Loading
    Ye, Lin
    Zhang, Tong
    BIOTECHNOLOGY AND BIOENGINEERING, 2011, 108 (11) : 2544 - 2552
  • [39] Role of nitrogen oxides in the metabolism of ammonia-oxidizing bacteria
    Kampschreur, MJ
    Tan, NCG
    Picioreanu, C
    Jetten, MSM
    Schmidt, I
    van Loosdrecht, MCM
    BIOCHEMICAL SOCIETY TRANSACTIONS, 2006, 34 : 179 - 181
  • [40] Spatiotemporal dynamics of ammonia-oxidizing archaea and bacteria contributing to nitrification in sediments from Bohai Sea and South Yellow Sea, China
    Li, Mingyue
    He, Hui
    Mi, Tiezhu
    Zhen, Yu
    SCIENCE OF THE TOTAL ENVIRONMENT, 2022, 825