Ising and Bloch domain walls in a two-dimensional parametrically driven Ginzburg-Landau equation model with nonlinearity management

被引:3
|
作者
Gaididei, Yu. B. [1 ]
Christiansen, P. L. [2 ,3 ]
机构
[1] Bogolyubov Inst Theoret Phys, UA-03680 Kiev, Ukraine
[2] Tech Univ Denmark, Dept Informat & Math Modelling, DK-2800 Lyngby, Denmark
[3] Tech Univ Denmark, Dept Phys, DK-2800 Lyngby, Denmark
来源
PHYSICAL REVIEW E | 2008年 / 78卷 / 02期
关键词
D O I
10.1103/PhysRevE.78.026610
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study a parametrically driven Ginzburg-Landau equation model with nonlinear management. The system is made of laterally coupled long active waveguides placed along a circumference. Stationary solutions of three kinds are found: periodic Ising states and two types of Bloch states, staggered and unstaggered. The stability of these states is investigated analytically and numerically. The nonlinear dynamics of the Bloch states are described by a complex Ginzburg-Landau equation with linear and nonlinear parametric driving. The switching between the staggered and unstaggered Bloch states under the action of direct ac forces is shown.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Solitary pulses and periodic waves in the parametrically driven complex Ginzburg-Landau equation
    Sakaguchi, H
    Malomed, B
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2003, 72 (06) : 1360 - 1365
  • [22] Global existence theory for the two-dimensional derivative Ginzburg-Landau equation
    CAO Zhenchao+1
    2. Institute of Applied Physics and Computational Mathematics
    ChineseScienceBulletin, 1998, (05) : 393 - 395
  • [23] Defect statistics in the two-dimensional complex Ginzburg-Landau model
    Mazenko, GF
    PHYSICAL REVIEW E, 2001, 64 (01): : 11 - 016110
  • [24] Ramped-induced states in the parametrically driven Ginzburg-Landau model
    Malomed, BA
    Rotstein, HG
    PHYSICS LETTERS A, 2001, 283 (5-6) : 327 - 334
  • [25] Domain walls and textured vortices in a two-component Ginzburg-Landau model
    Madsen, S
    Gaididei, YB
    Christiansen, PL
    Pedersen, NF
    PHYSICS LETTERS A, 2005, 344 (06) : 432 - 440
  • [26] Two-dimensional discrete Ginzburg-Landau solitons
    Efremidis, Nikolaos K.
    Christodoulides, Demetrios N.
    Hizanidis, Kyriakos
    PHYSICAL REVIEW A, 2007, 76 (04):
  • [27] Ising-Bloch transition for the parametric Ginzburg-Landau equation with rapidly varying perturbations
    Michaelis, D
    Abdullaev, FK
    Darmanyan, SA
    Lederer, F
    PHYSICAL REVIEW E, 2005, 71 (05):
  • [28] FRONTS, DOMAIN-WALLS AND PULSES IN A GENERALIZED GINZBURG-LANDAU EQUATION
    DUAN, JQ
    HOLMES, P
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1995, 38 : 77 - 97
  • [29] Analysis of Some Finite Difference Schemes for Two-Dimensional Ginzburg-Landau Equation
    Wang, Tingchun
    Guo, Boling
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2011, 27 (05) : 1340 - 1363
  • [30] HOC-ADI schemes for two-dimensional Ginzburg-Landau equation in superconductivity
    Kong, Linghua
    Luo, Yiyang
    Wang, Lan
    Chen, Meng
    Zhao, Zhi
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2021, 190 : 494 - 507