Multiple-component Decomposition from Millimeter Single-channel Data

被引:3
|
作者
Rodriguez-Montoya, Ivan [1 ,2 ]
Sanchez-Arguelles, David [2 ]
Aretxaga, Itziar [2 ]
Bertone, Emanuele [2 ]
Chavez-Dagostino, Miguel [2 ]
Hughes, David H. [2 ]
Montana, Alfredo [2 ]
Wilson, Grant W. [3 ]
Zeballos, Milagros [2 ]
机构
[1] Consejo Nacl Ciencia & Technol, Av Insurgentes 1582, Mexico City 03940, Ciudad De Mexic, Mexico
[2] Inst Nacl Astrofis Opt & Electr, Apartado Postal 51 & 216, Puebla Pue 72000, Mexico
[3] Univ Massachusetts, Dept Astron, Amherst, MA 01003 USA
来源
关键词
atmospheric effects; methods: statistical; submillimeter: diffuse background; submillimeter: galaxies; techniques: image processing; GOODS-S FIELD; AZTEC/ASTE; NOISE;
D O I
10.3847/1538-4365/aaa83c
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present an implementation of a blind source separation algorithm to remove foregrounds off millimeter surveys made by single-channel instruments. In order to make possible such a decomposition over single-wavelength data, we generate levels of artificial redundancy, then perform a blind decomposition, calibrate the resulting maps, and lastly measure physical information. We simulate the reduction pipeline using mock data: atmospheric fluctuations, extended astrophysical foregrounds, and point-like sources, but we apply the same methodology to the Aztronomical Thermal Emission Camera/ASTE survey of the Great Observatories Origins Deep Survey-South (GOODS-S). In both applications, our technique robustly decomposes redundant maps into their underlying components, reducing flux bias, improving signal-to-noise ratio, and minimizing information loss. In particular, GOODS-S is decomposed into four independent physical components: one of them is the already-known map of point sources, two are atmospheric and systematic foregrounds, and the fourth component is an extended emission that can be interpreted as the confusion background of faint sources.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Can we learn anything from single-channel unaveraged MEG data?
    W. L. Woon
    D. Lowe
    Neural Computing & Applications, 2004, 13 : 360 - 368
  • [32] Can we learn anything from single-channel unaveraged MEG data?
    Woon, WL
    Lowe, D
    NEURAL COMPUTING & APPLICATIONS, 2004, 13 (04): : 360 - 368
  • [33] Removing Muscle Artifacts From EEG Data: Multichannel or Single-Channel Techniques?
    Chen, Xun
    Liu, Aiping
    Chiang, Joyce
    Wang, Z. Jane
    McKeown, Martin J.
    Ward, Rabab K.
    IEEE SENSORS JOURNAL, 2016, 16 (07) : 1986 - 1997
  • [34] Application of single-channel sampling on data acquisition in DBF
    Li, Shao-Bin
    Hua, Guang-Zhou
    Fan, Lu-Hai
    Harbin Gongye Daxue Xuebao/Journal of Harbin Institute of Technology, 2004, 36 (05): : 670 - 673
  • [35] Inversion of Markov processes to determine rate constants from single-channel data
    Jackson, MB
    BIOPHYSICAL JOURNAL, 1997, 73 (03) : 1382 - 1394
  • [36] Single-channel and multi-channel orthogonal matching pursuit for seismic trace decomposition
    Feng, Xuan
    Zhang, Xuebing
    Liu, Cai
    Lu, Qi
    JOURNAL OF GEOPHYSICS AND ENGINEERING, 2017, 14 (01) : 90 - 99
  • [37] Multiple-component chain dynamics as pictured from NMR in polybutadiene.
    Addad, JPC
    Guillermo, A
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2003, 225 : U642 - U643
  • [38] Separation of fault features from a single-channel mechanical signal mixture using wavelet decomposition
    Hong, Hoonbin
    Liang, Ming
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2007, 21 (05) : 2025 - 2040
  • [39] Decomposition of Radiated Disturbances Based on Single-channel Blind Source Separation
    Cao, Bin
    Lu, Jiajun
    Gu, Yixing
    Ren, Jinjing
    Jing, Shenhui
    PROCEEDINGS OF THE 2020 INTERNATIONAL SYMPOSIUM ON ELECTROMAGNETIC COMPATIBILITY (EMC EUROPE), 2020,
  • [40] Fetal ECG extraction from single-channel maternal ECG using singular value decomposition
    Kanjilal, PP
    Palit, S
    Saha, G
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 1997, 44 (01) : 51 - 59