The potential of hyperpolarized 13C magnetic resonance spectroscopy to monitor the effect of combretastatin based vascular disrupting agents

被引:10
|
作者
Iversen, Ane B. [1 ]
Busk, Morten [1 ]
Bertelsen, Lotte B. [2 ]
Laustsen, Christoffer [2 ]
Munk, Ole L. [3 ]
Nielsen, Thomas [4 ]
Wittenborn, Thomas R. [1 ]
Bussink, Johan [5 ]
Lok, Jasper [5 ]
Stodkilde-Jorgensen, Hans [2 ]
Horsman, Michael R. [1 ]
机构
[1] Aarhus Univ Hosp, Dept Expt Clin Oncol, Noerrebrogade 44,Bldg 5, DK-8000 Aarhus, Denmark
[2] Aarhus Univ Hosp, MR Res Ctr, Aarhus, Denmark
[3] Aarhus Univ Hosp, PET Ctr, Aarhus, Denmark
[4] Aarhus Univ Hosp, Ctr Funct Integrat Neurosci, Aarhus, Denmark
[5] Radboud Univ Nijmegen, Med Ctr, Dept Radiat Oncol, Nijmegen, Netherlands
关键词
POSITRON-EMISSION-TOMOGRAPHY; A-4 DISODIUM PHOSPHATE; TUMOR; COMBINATION; RADIATION; CANCER; THERAPY; RATIO; PET;
D O I
10.1080/0284186X.2017.1351622
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background: Targeting tumor vasculature with vascular disrupting agents (VDAs) results in substantial cell death that precede tumor shrinkage. Here, we investigate the potential of hyperpolarized magnetic resonance spectroscopy (HPMRS) to monitor early metabolic changes associated with VDA treatment. Methods: Mice bearing C3H mammary carcinomas were treated with the VDAs combretastatin-A4-phosphate (CA4P) or the analog OXi4503, and HPMRS was performed following [1-C-13]pyruvate administration. Similarly, treated mice were positron emission tomography (PET) scanned following administration of the glucose analog FDG. Finally, metabolic imaging parameters were compared to tumor regrowth delay and measures of vascular damage, derived from dynamic contrast-agent enhanced magnetic resonance imaging (DCE-MRI) and histology. Results: VDA-treatment impaired tumor perfusion (histology and DCE-MRI), reduced FDG uptake, increased necrosis, and slowed tumor growth. HPMRS, revealed that the [1-C-13]pyruvate-to[ 1-C-13]lactate conversion remained unaltered, whereas [1-C-13]lactate-to-[C-13]bicarbonate (originating from respiratory CO2) ratios increased significantly following treatment. Conclusions: DCE-MRI and FDG-PET revealed loss of vessel functionality, impaired glucose delivery and reduced metabolic activity prior to cell death. [1-C-13]lactate-to-[C-13]bicarbonate ratios increased significantly during treatment, indicating a decline in respiratory activity driven by the onset of hypoxia. HPMRS is promising for early detection of metabolic stress inflicted by VDAs, which cannot easily be inferred based on blood flow measurements.
引用
收藏
页码:1626 / 1633
页数:8
相关论文
共 50 条
  • [21] IMAGING INFLAMMATORY CELL FUNCTION USING 13C MAGNETIC RESONANCE SPECTROSCOPY OF HYPERPOLARIZED 6-13C-LABELED ARGININE
    Najac, Chloe
    Chaumeil, Myriam M.
    Kohanbash, Gary
    Guglielmetti, Caroline
    Gordon, Jeremy
    Okada, Hideho
    Ronen, Sabrina M.
    NEURO-ONCOLOGY, 2016, 18 : 86 - 86
  • [22] Hyperpolarized 13C magnetic resonance metabolic imaging: application to brain tumors
    Park, Ilwoo
    Larson, Peder E. Z.
    Zierhut, Matthew L.
    Hu, Simon
    Bok, Robert
    Ozawa, Tomoko
    Kurhanewicz, John
    Vigneron, Daniel B.
    VandenBerg, Scott R.
    James, C. David
    Nelson, Sarah J.
    NEURO-ONCOLOGY, 2010, 12 (02) : 133 - 144
  • [23] Hyperpolarized 13C magnetic resonance imaging for noninvasive assessment of tissue inflammation
    Anderson, Stephanie
    Grist, James T.
    Lewis, Andrew
    Tyler, Damian J.
    NMR IN BIOMEDICINE, 2021, 34 (03)
  • [24] Magnetic resonance butterfly coils: Design and application for hyperpolarized 13C studies
    Giovannetti, Giulio
    Frijia, Francesca
    Attanasio, Simona
    Menichetti, Luca
    Hartwig, Valentina
    Vanello, Nicola
    Ardenkjaer-Larsen, Jan Henrik
    De Marchi, Daniele
    Positano, Vincenzo
    Schulte, Rolf
    Landini, Luigi
    Lombardi, Massimo
    Santarelli, Maria Filomena
    MEASUREMENT, 2013, 46 (09) : 3282 - 3290
  • [25] Detection of Transgene Expression Using Hyperpolarized 13C Urea and Diffusion-Weighted Magnetic Resonance Spectroscopy
    Patrick, P. Stephen
    Kettunen, Mikko I.
    Tee, Sui-Seng
    Rodrigues, Tiago B.
    Serrao, Eva
    Timm, Kerstin N.
    McGuire, Sarah
    Brindle, Kevin M.
    MAGNETIC RESONANCE IN MEDICINE, 2015, 73 (04) : 1401 - 1406
  • [26] Detection of radiation-induced lung injury using hyperpolarized 13C magnetic resonance spectroscopy and imaging
    Thind, K.
    Chen, A.
    Friesen-Waldner, L.
    Ouriadov, A.
    Scholl, T. J.
    Fox, M.
    Wong, E.
    VanDyk, J.
    Hope, A.
    Santyr, G.
    MAGNETIC RESONANCE IN MEDICINE, 2013, 70 (03) : 601 - 609
  • [27] Real-time assessment of Krebs cycle metabolism using hyperpolarized 13C magnetic resonance spectroscopy
    Schroeder, Marie A.
    Atherton, Helen J.
    Ball, Daniel R.
    Cole, Mark A.
    Heather, Lisa C.
    Griffin, Julian L.
    Clarke, Kieran
    Radda, George K.
    Tyler, Damian J.
    FASEB JOURNAL, 2009, 23 (08): : 2529 - 2538
  • [28] Using Hyperpolarized 13C Magnetic Resonance Spectroscopy to Detect Radiation Induced Lung Injury at an Early Stage
    Thind, K.
    Ouriadov, A.
    Feiesen-Waldner, L.
    Chen, A.
    Scholl, T.
    Fox, M.
    Wong, E.
    VanDyk, J.
    Hill, R.
    Hope, A.
    Santyr, G.
    MEDICAL PHYSICS, 2011, 38 (06) : 3742 - +
  • [29] DNP-hyperpolarized 13C magnetic resonance metabolic imaging for cancer applications
    Nelson, S. J.
    Vigneron, D.
    Kurhanewicz, J.
    Chen, A.
    Bok, R.
    Hurd, R.
    APPLIED MAGNETIC RESONANCE, 2008, 34 (3-4) : 533 - 544
  • [30] DNP-Hyperpolarized 13C Magnetic Resonance Metabolic Imaging for Cancer Applications
    S. J. Nelson
    D. Vigneron
    J. Kurhanewicz
    A. Chen
    R. Bok
    R. Hurd
    Applied Magnetic Resonance, 2008, 34 : 533 - 544