Online Learning Enabled Task Offloading for Vehicular Edge Computing

被引:35
|
作者
Zhang, Rui [1 ]
Cheng, Peng [1 ]
Chen, Zhuo [2 ]
Liu, Sige [1 ]
Li, Yonghui [1 ]
Vucetic, Branka [1 ]
机构
[1] Univ Sydney, Sch Elect & Informat Engn, Sydney, NSW 2134, Australia
[2] CSIRO DATA61, Sydney, NSW 2122, Australia
基金
澳大利亚研究理事会;
关键词
Task analysis; Space exploration; Energy consumption; Benchmark testing; Edge computing; Central Processing Unit; Delays; Online learning; task offloading; vehicle edge computing;
D O I
10.1109/LWC.2020.2973985
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Vehicular edge computing pushes the cloud computing capability to the distributed network edge nodes, enabling computation-intensive and latency-sensitive computing services for smart vehicles through task offloading. However, the inherent mobility introduces fast variation of network structure, which are usually unknown a priori. In this letter, we formulate the vehicular task offloading as a mortal multi-armed bandit problem, and develop a new online algorithm to enable distributed decision making on the node selection. The key is to exploit the contextual information of edge nodes and transform the infinite exploration space to a finite one. Theoretically, we prove that the proposed algorithm has a sublinear learning regret. Simulation results verify its effectiveness.
引用
收藏
页码:928 / 932
页数:5
相关论文
共 50 条
  • [31] Parked vehicles crowdsourcing for task offloading in vehicular edge computing
    Feng Zeng
    Ranran Rou
    Qi Deng
    Jinsong Wu
    Peer-to-Peer Networking and Applications, 2023, 16 : 1803 - 1818
  • [32] A Task Partitioning and Offloading Scheme in Vehicular Edge Computing Networks
    Qi, Wen
    Xia, Xu
    Wang, Heng
    Xing, Yanxia
    2021 IEEE 94TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2021-FALL), 2021,
  • [33] Distributed Task Offloading and Resource Allocation in Vehicular Edge Computing
    Li, Shichao
    Chen, Hongbin
    Lin, Siyu
    Zhang, Ning
    2020 INTERNATIONAL CONFERENCE ON SPACE-AIR-GROUND COMPUTING (SAGC 2020), 2020, : 13 - 18
  • [34] Trusted and Efficient Task Offloading in Vehicular Edge Computing Networks
    Guo, Hongzhi
    Chen, Xiangshen
    Zhou, Xiaoyi
    Liu, Jiajia
    IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, 2024, 10 (06) : 2370 - 2382
  • [35] Adaptive Prioritization and Task Offloading in Vehicular Edge Computing Through Deep Reinforcement Learning
    Uddin, Ashab
    Sakr, Ahmed Hamdi
    Zhang, Ning
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2025, 74 (03) : 5038 - 5052
  • [36] Efficient Task Offloading for Mobile Edge Computing in Vehicular Networks
    Han, Xiao
    Wang, Huiqiang
    Yang, Guoliang
    Wang, Chengbo
    INTERNATIONAL JOURNAL OF DIGITAL CRIME AND FORENSICS, 2024, 16 (01)
  • [37] Mean-field reinforcement learning for decentralized task offloading in vehicular edge computing
    Shen, Si
    Shen, Guojiang
    Yang, Xiaoxue
    Xia, Feng
    Du, Hao
    Kong, Xiangjie
    JOURNAL OF SYSTEMS ARCHITECTURE, 2024, 146
  • [38] Matching-Based Task Offloading for Vehicular Edge Computing
    Liu, Pengju
    Li, Junluo
    Sun, Zhongwei
    IEEE ACCESS, 2019, 7 : 27628 - 27640
  • [39] Efficient Task Allocation for Computation Offloading in Vehicular Edge Computing
    Zhang, Zheng
    Zeng, Feng
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (06) : 5595 - 5606
  • [40] Task Offloading Based on Vehicular Edge Computing for Autonomous Platooning
    Nam S.
    Kwak S.
    Lee J.
    Park S.
    Computer Systems Science and Engineering, 2023, 46 (01): : 659 - 670