Robust analysis of longitudinal data with nonignorable missing responses

被引:8
|
作者
Sinha, Sanjoy K. [1 ]
机构
[1] Carleton Univ, Sch Math & Stat, Ottawa, ON K1S 5B6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Generalized linear models; Incomplete data; Missing responses; Mixed models; Robust estimation; GENERALIZED LINEAR-MODELS; MIXED MODELS; BINARY RESPONSES; DATA MECHANISM; REGRESSION; INFERENCE;
D O I
10.1007/s00184-011-0359-3
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We encounter missing data in many longitudinal studies. When the missing data are nonignorable, it is important to analyze the data by incorporating the missing data mechanism into the observed data likelihood function. The classical maximum likelihood (ML) method for analyzing longitudinal missing data has been extensively studied in the literature. However, it is well-known that the ordinary ML estimators are sensitive to extreme observations or outliers in the data. In this paper, we propose and explore a robust method, which is developed in the framework of the ML method, and is useful for downweighting any influential observations in the data when estimating the model parameters. We study the empirical properties of the robust estimators in small simulations. We also illustrate the robust method using incomplete longitudinal data on CD4 counts from clinical trials of HIV-infected patients.
引用
收藏
页码:913 / 938
页数:26
相关论文
共 50 条
  • [41] A SEMIPARAMETRIC APPROACH FOR ANALYZING NONIGNORABLE MISSING DATA
    Xie, Hui
    Qian, Yi
    Qu, Leming
    STATISTICA SINICA, 2011, 21 (04) : 1881 - 1899
  • [42] Parametric fractional imputation for nonignorable missing data
    Ji Young Kim
    Jae Kwang Kim
    Journal of the Korean Statistical Society, 2012, 41 : 291 - 303
  • [43] Parametric fractional imputation for nonignorable missing data
    Kim, Ji Young
    Kim, Jae Kwang
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2012, 41 (03) : 291 - 303
  • [44] IDENTIFICATION AND INFERENCE WITH NONIGNORABLE MISSING COVARIATE DATA
    Miao, Wang
    Tchetgen, Eric Tchetgen
    STATISTICA SINICA, 2018, 28 (04) : 2049 - 2067
  • [45] Kernel machine in semiparametric regression with nonignorable missing responses
    Fu, Zhenzhen
    Yang, Ke
    Rong, Yaohua
    Shu, Yu
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2024, 53 (04) : 1091 - 1109
  • [46] SEQUENTIAL IDENTIFICATION OF NONIGNORABLE MISSING DATA MECHANISMS
    Sadinle, Mauricio
    Reiter, Jerome P.
    STATISTICA SINICA, 2018, 28 (04) : 1741 - 1759
  • [47] A MIXED-EFFECTS ESTIMATING EQUATION APPROACH TO NONIGNORABLE MISSING LONGITUDINAL DATA WITH REFRESHMENT SAMPLES
    Bi, Xuan
    Qu, Annie
    STATISTICA SINICA, 2018, 28 (04) : 1653 - 1675
  • [48] Goodness of fit of a joint model for event time and nonignorable missing longitudinal quality of life data
    Gulati, S
    Mesbah, M
    PROBABILITY, STATISTICS AND MODELLING IN PUBLIC HEALTH, 2006, : 159 - +
  • [49] Two-part hidden Markov models for semicontinuous longitudinal data with nonignorable missing covariates
    Zhou, Xiaoxiao
    Kang, Kai
    Song, Xinyuan
    STATISTICS IN MEDICINE, 2020, 39 (13) : 1801 - 1816
  • [50] Modeling Nonignorable Missing Data in Speeded Tests
    Glas, Cees A. W.
    Pimentel, Jonald L.
    EDUCATIONAL AND PSYCHOLOGICAL MEASUREMENT, 2008, 68 (06) : 907 - 922