Plasma potential mapping of high power impulse magnetron sputtering discharges

被引:73
|
作者
Rauch, Albert [1 ]
Mendelsberg, Rueben J. [1 ]
Sanders, Jason M. [1 ]
Anders, Andre [1 ]
机构
[1] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA
关键词
EMISSIVE PROBE; DEPOSITION; LANGMUIR; SHEATH; FIELD; TIME;
D O I
10.1063/1.3700242
中图分类号
O59 [应用物理学];
学科分类号
摘要
Pulsed emissive probe techniques have been used to determine the plasma potential distribution of high power impulse magnetron sputtering (HiPIMS) discharges. An unbalanced magnetron with a niobium target in argon was investigated for a pulse length of 100 mu s at a pulse repetition rate of 100 Hz, giving a peak current of 170 A. The probe data were recorded with a time resolution of 20 ns and a spatial resolution of 1 mm. It is shown that the local plasma potential varies greatly in space and time. The lowest potential was found over the target's racetrack, gradually reaching anode potential (ground) several centimeters away from the target. The magnetic presheath exhibits a funnel-shaped plasma potential resulting in an electric field which accelerates ions toward the racetrack. In certain regions and times, the potential exhibits weak local maxima which allow for ion acceleration to the substrate. Knowledge of the local E and static B fields lets us derive the electrons' E x B drift velocity, which is about 10(5) m/s and shows structures in space and time. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3700242]
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Metal filling by high power impulse magnetron sputtering
    Jablonka, Lukas
    Moskovkin, Pavel
    Zhang, Zhen
    Zhang, Shi-Li
    Lucas, Stephane
    Kubart, Tomas
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2019, 52 (36)
  • [32] High power impulse magnetron sputtering and its applications
    袁燕
    杨丽珍
    刘忠伟
    陈强
    Plasma Science and Technology, 2018, 20 (06) : 56 - 72
  • [33] Spokes in high power impulse magnetron sputtering plasmas
    Hecimovic, Ante
    von Keudell, Achim
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2018, 51 (45)
  • [34] High power impulse magnetron sputtering and its applications
    袁燕
    杨丽珍
    刘忠伟
    陈强
    Plasma Science and Technology, 2018, (06) : 56 - 72
  • [35] High power impulse magnetron sputtering of a zirconium target
    Babu, Swetha Suresh
    Fischer, Joel
    Barynova, Kateryna
    Rudolph, Martin
    Lundin, Daniel
    Gudmundsson, Jon Tomas
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2024, 42 (04):
  • [36] High power impulse magnetron sputtering using a rotating cylindrical magnetron
    Leroy, W. P.
    Mahieu, S.
    Depla, D.
    Ehiasarian, A. P.
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2010, 28 (01): : 108 - 111
  • [37] Time-resolved Langmuir probe investigation of hybrid high power impulse magnetron sputtering discharges
    Drache, Steffen
    Stranak, Vitezslav
    Herrendorf, Ann-Pierra
    Cada, Martin
    Hubicka, Zdenek
    Tichy, Milan
    Hippler, Rainer
    VACUUM, 2013, 90 : 176 - 181
  • [38] Observation of Ti4+ ions in a high power impulse magnetron sputtering plasma
    Andersson, Joakim
    Ehiasarian, Arutiun P.
    Anders, Andre
    APPLIED PHYSICS LETTERS, 2008, 93 (07)
  • [39] Boron-rich plasma by high power impulse magnetron sputtering of lanthanum hexaboride
    Oks, Efim M.
    Anders, Andre
    JOURNAL OF APPLIED PHYSICS, 2012, 112 (08)
  • [40] Plasma reactivity in high-power impulse magnetron sputtering through oxygen kinetics
    Vitelaru, Catalin
    Lundin, Daniel
    Brenning, Nils
    Minea, Tiberiu
    APPLIED PHYSICS LETTERS, 2013, 103 (10)