Plasma potential mapping of high power impulse magnetron sputtering discharges

被引:73
|
作者
Rauch, Albert [1 ]
Mendelsberg, Rueben J. [1 ]
Sanders, Jason M. [1 ]
Anders, Andre [1 ]
机构
[1] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA
关键词
EMISSIVE PROBE; DEPOSITION; LANGMUIR; SHEATH; FIELD; TIME;
D O I
10.1063/1.3700242
中图分类号
O59 [应用物理学];
学科分类号
摘要
Pulsed emissive probe techniques have been used to determine the plasma potential distribution of high power impulse magnetron sputtering (HiPIMS) discharges. An unbalanced magnetron with a niobium target in argon was investigated for a pulse length of 100 mu s at a pulse repetition rate of 100 Hz, giving a peak current of 170 A. The probe data were recorded with a time resolution of 20 ns and a spatial resolution of 1 mm. It is shown that the local plasma potential varies greatly in space and time. The lowest potential was found over the target's racetrack, gradually reaching anode potential (ground) several centimeters away from the target. The magnetic presheath exhibits a funnel-shaped plasma potential resulting in an electric field which accelerates ions toward the racetrack. In certain regions and times, the potential exhibits weak local maxima which allow for ion acceleration to the substrate. Knowledge of the local E and static B fields lets us derive the electrons' E x B drift velocity, which is about 10(5) m/s and shows structures in space and time. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3700242]
引用
收藏
页数:12
相关论文
共 50 条
  • [1] High power impulse magnetron sputtering discharges: Instabilities and plasma self-organization
    Ehiasarian, A. P.
    Hecimovic, A.
    de los Arcos, T.
    New, R.
    Schulz-von der Gathen, V.
    Boeke, M.
    Winter, J.
    APPLIED PHYSICS LETTERS, 2012, 100 (11)
  • [2] Plasma flares in high power impulse magnetron sputtering
    Ni, Pavel A.
    Hornschuch, Christian
    Panjan, Matjaz
    Anders, Andre
    APPLIED PHYSICS LETTERS, 2012, 101 (22)
  • [3] Modeling of high power impulse magnetron sputtering discharges with graphite target
    Eliasson, H.
    Rudolph, M.
    Brenning, N.
    Hajihoseini, H.
    Zanaska, M.
    Adriaans, M. J.
    Raadu, M. A.
    Minea, T. M.
    Gudmundsson, J. T.
    Lundin, D.
    PLASMA SOURCES SCIENCE & TECHNOLOGY, 2021, 30 (11):
  • [4] Modeling of high power impulse magnetron sputtering discharges with tungsten target
    Babu, Swetha Suresh
    Rudolph, Martin
    Lundin, Daniel
    Shimizu, Tetsuhide
    Fischer, Joel
    Raadu, Michael A.
    Brenning, Nils
    Gudmundsson, Jon Tomas
    PLASMA SOURCES SCIENCE & TECHNOLOGY, 2022, 31 (06):
  • [5] Are the argon metastables important in high power impulse magnetron sputtering discharges?
    Gudmundsson, J. T.
    Lundin, D.
    Stancu, G. D.
    Brenning, N.
    Minea, T. M.
    PHYSICS OF PLASMAS, 2015, 22 (11)
  • [6] Compression and strong rarefaction in high power impulse magnetron sputtering discharges
    Horwat, David
    Anders, Andre
    JOURNAL OF APPLIED PHYSICS, 2010, 108 (12)
  • [7] A non-stationary model for high power impulse magnetron sputtering discharges
    Kozak, Tomas
    Pajdarova, Andrea Dagmar
    JOURNAL OF APPLIED PHYSICS, 2011, 110 (10)
  • [8] An ionization region model for high-power impulse magnetron sputtering discharges
    Raadu, M. A.
    Axnas, I.
    Gudmundsson, J. T.
    Huo, C.
    Brenning, N.
    PLASMA SOURCES SCIENCE & TECHNOLOGY, 2011, 20 (06):
  • [9] The statistics of spoke configurations in high-power impulse magnetron sputtering discharges
    Klein, P.
    Hnilica, J.
    Zemanek, M.
    Bradley, J. W.
    Vasina, P.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2019, 52 (12)
  • [10] Rarefaction windows in a high-power impulse magnetron sputtering plasma
    Palmucci, Maria
    Britun, Nikolay
    Konstantinidis, Stephanos
    Snyders, Rony
    JOURNAL OF APPLIED PHYSICS, 2013, 114 (11)