The Gribov problem in presence of background field for SU(2) Yang-Mills theory

被引:10
|
作者
Canfora, Fabrizio [1 ]
Hidalgo, Diego [1 ,2 ]
Pais, Pablo [1 ,3 ,4 ]
机构
[1] Ctr Estudios Cient, Casilla 1469, Valdivia, Chile
[2] Univ Concepcion, Dept Fis, Casilla 160, Concepcion, Chile
[3] Univ Bruxelles, Phys Theor & Math, Campus Plaine CP 231, B-1050 Brussels, Belgium
[4] Int Solvay Inst, Campus Plaine CP 231, B-1050 Brussels, Belgium
关键词
BARYON NUMBER NONCONSERVATION; QUARK-GLUON PLASMA; GAUGE-THEORIES; VACUUM POLARIZATION; RENORMALIZATION; SPECTRUM; HORIZON;
D O I
10.1016/j.physletb.2016.10.024
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The Gribov problem in the presence of a background field is analyzed: in particular, we study the Gribov copies equation in the Landau-De Witt gauge as well as the semi-classical Gribov gap equation. As background field, we choose the simplest non-trivial one which corresponds to a constant gauge potential with non-vanishing component along the Euclidean time direction. This kind of constant non-Abelian background fields is very relevant in relation with (the computation of) the Polyakov loop but it also appears when one considers the non-Abelian Schwinger effect. We show that the Gribov copies equation is affected directly by the presence of the background field, constructing an explicit example. The analysis of the Gribov gap equation shows that the larger the background field, the smaller the Gribov mass parameter. These results strongly suggest that the relevance of the Gribov copies (from the path integral point of view) decreases as the size of the background field increases. (C) 2016 The Authors. Published by Elsevier B.V.
引用
收藏
页码:94 / 101
页数:8
相关论文
共 50 条
  • [41] A new geometric framework for SU(2) Yang-Mills theory
    Turakulov, Z
    GROUP 21 - PHYSICAL APPLICATIONS AND MATHEMATICAL ASPECTS OF GEOMETRY, GROUPS, AND ALGEBRA, VOLS 1 AND 2, 1997, : 649 - 652
  • [42] Topological quantization of instantons in SU(2) Yang-Mills theory
    Zhong, Wo-Jun
    Duan, Yi-Shi
    CHINESE PHYSICS LETTERS, 2008, 25 (05) : 1534 - 1537
  • [43] 't Hooft loop in SU(2) Yang-Mills theory
    de Forcrand, P
    D'Elia, M
    Pepe, M
    PHYSICAL REVIEW LETTERS, 2001, 86 (08) : 1438 - 1441
  • [44] Axially symmetric solutions for SU(2) Yang-Mills theory
    Singleton, D
    JOURNAL OF MATHEMATICAL PHYSICS, 1996, 37 (09) : 4574 - 4583
  • [45] Divergencies in θ-expanded noncommutative SU(2) Yang-Mills theory
    Buric, M
    Radovanovic, V
    MATHEMATICAL, THEORETICAL AND PHENOMENOLOGICAL CHALLENGES BEYOND THE STANDARD MODEL: PERSPECTIVES OF THE BALKAN COLLABORATIONS, 2005, : 171 - 180
  • [46] Numerical study of SU(2) Yang-Mills theory with gluinos
    Koutsoumbas, G
    Montvay, I
    Pap, A
    Spanderen, K
    Talkenberger, D
    Westphalen, J
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 1998, 63 : 727 - 729
  • [47] MASSLESS SU(N) YANG-MILLS THEORY IN 2 DIMENSIONS
    HOSSEINPARTOVI, M
    PHYSICAL REVIEW D, 1980, 22 (08) : 2032 - 2039
  • [48] The grassmannian sigma model in SU(2) Yang-Mills theory
    Marsh, David
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (32) : 9919 - 9928
  • [49] Confining potential under the gauge field condensation in the SU(2) Yang-Mills theory
    Sawayanagi, Hirohumi
    PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2021, 2021 (02):
  • [50] GAUGE FIELD THERMODYNAMICS FOR THE SU(2) YANG-MILLS SYSTEM
    ENGELS, J
    KARSCH, F
    SATZ, H
    MONTVAY, I
    NUCLEAR PHYSICS B, 1982, 205 (04) : 545 - 577