Estimating the causal effect of measured endogenous variables: A tutorial on experimentally randomized instrumental variables

被引:77
|
作者
Sajons, Gwendolin B. [1 ,2 ]
机构
[1] Univ Basel, Dept Business & Econ, Peter Merian Weg 6, CH-4002 Basel, Switzerland
[2] ESCP Business Sch, Heubnerweg 8-10, D-14059 Berlin, Germany
来源
LEADERSHIP QUARTERLY | 2020年 / 31卷 / 05期
关键词
Experiments; Instrumental variable estimation; Causality; Omitted variables; Endogeneity; MENDELIAN RANDOMIZATION; ORGANIZATIONAL JUSTICE; GENERALIZED-METHOD; WEAK INSTRUMENTS; JOB-SATISFACTION; HAUSMAN TEST; IDENTIFICATION; LEADERSHIP; TESTS; CONSEQUENCES;
D O I
10.1016/j.leaqua.2019.101348
中图分类号
B849 [应用心理学];
学科分类号
040203 ;
摘要
Omitted variables create endogeneity and thus bias the estimation of the causal effect of measured variables on outcomes. Such measured variables are ubiquitous and include perceptions, attitudes, emotions, behaviors, and choices. Even experimental studies are not immune to the endogeneity problem. I propose a solution to this challenge: Experimentally randomized instrumental variables (ERIVs), which can correct for endogeneity bias via instrumental variable estimation. Such ERIVs can be generated in laboratory or field settings. Using perceptions as an example of a measured variable, I examine 74 recent articles from two top-tier management journals. The estimation methods commonly used exposed estimates to potential endogeneity bias; yet, authors incorrectly interpreted the estimated coefficients as causal in all cases. Then I demonstrate the mechanics of the ERIV procedure using simulated data and show how researchers can apply this methodology in a real experimental context.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Identification of the Direction of a Causal Effect by Instrumental Variables
    Kline, Brendan
    [J]. JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2016, 34 (02) : 176 - 184
  • [2] Causal instrumental variables and interventions
    Reiss, Julian
    [J]. PHILOSOPHY OF SCIENCE, 2005, 72 (05) : 964 - 976
  • [3] A tutorial on the use of instrumental variables in pharmacoepidemiology
    Ertefaie, Ashkan
    Small, Dylan S.
    Flory, James H.
    Hennessy, Sean
    [J]. PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2017, 26 (04) : 357 - 367
  • [4] Estimating causal effects with hidden confounding using instrumental variables and environments
    Long, James P.
    Zhu, Hongxu
    Do, Kim-Anh
    Ha, Min Jin
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2023, 17 (02): : 2849 - 2879
  • [5] Causal inference with imperfect instrumental variables
    Miklin, Nikolai
    Gachechiladze, Mariami
    Moreno, George
    Chaves, Rafael
    [J]. JOURNAL OF CAUSAL INFERENCE, 2022, 10 (01) : 45 - 63
  • [6] ESTIMATING BIVARIATE ERRORS-IN-VARIABLES MODELS WITH INSTRUMENTAL VARIABLES
    CLAPP, JM
    DEY, DK
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 1993, 22 (03) : 863 - 876
  • [7] Identification of causal effects using instrumental variables in randomized trials with stochastic compliance
    Scosyrev, Emil
    [J]. BIOMETRICAL JOURNAL, 2013, 55 (01) : 97 - 113
  • [8] Identification and Extrapolation of Causal Effects with Instrumental Variables
    Mogstad, Magne
    Torgovitsky, Alexander
    [J]. ANNUAL REVIEW OF ECONOMICS, VOL 10, 2018, 10 : 577 - 613
  • [9] Causal Spillover Effects Using Instrumental Variables
    Vazquez-Bare, Gonzalo
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2023, 118 (543) : 1911 - 1922
  • [10] Mendelian randomisation and instrumental variables for causal inference
    Sheehan, NA
    Didelez, V
    [J]. GENETIC EPIDEMIOLOGY, 2005, 29 (03) : 277 - 277