共 50 条
Sugarcane expressed sequences tags (ESTs) encoding enzymes involved in lignin biosynthesis pathways
被引:10
|作者:
Ramos, RLB
Tovar, FJ
Junqueira, RM
Lino, FB
Sachetto-Martins, G
机构:
[1] Univ Fed Rio de Janeiro, CCS, Inst Biol, Dept Genet,Lab Genet Mol Vegetal, BR-21944970 Rio De Janeiro, Brazil
[2] Univ Fed Rio de Janeiro, CCS, Inst Biol, Dept Genet,Lab Genet Mol Eucariontes, BR-21944970 Rio De Janeiro, Brazil
关键词:
D O I:
10.1590/S1415-47572001000100031
中图分类号:
Q5 [生物化学];
Q7 [分子生物学];
学科分类号:
071010 ;
081704 ;
摘要:
Lignins are phenolic polymers found in the secondary wall of plant conductive systems where they play an important role by reducing the permeability of the cell wall to water. Lignins are also responsible for the rigidity of the cell wall and are involved in mechanisms of resistance to pathogens. The metabolic routes and enzymes involved in synthesis of lignins have been largely characterized and representative genes that encode enzymes involved in these processes have been cloned from several plant species. The synthesis of lignins is liked to the general metabolism of the phenylpropanoids in plants, having enzymes (e.g. phenylalanine ammonia-lyase (PAL), cinnamate 4-hydroxylase (C4H) and caffeic acid O-methyltransferase (COMT)) common to other processes as well as specific enzymes such as cinnamoyl-CoA reductase (CCR) and cinnamyl alcohol dehydrogenase (CAD). Some maize and sorghum mutants, shown to have defective in CAD and/or COMT activity, are easier to digest because they have a reduced lignin content, something which has motivated different research groups to alter the lignin content and composition of model plants by genetic engineering try to improve, for example, the efficiency of paper pulping and digestibility. In the work reported in this paper, we have made an inventory of the sugarcane expressed sequence tag (EST) coding for enzymes involved in lignin metabolism which are present in the sugarcane EST genome project (SUCEST) database. Our analysis focused on the key enzymes ferulate-5-hydroxylase (F5H), caffeic acid O-methyltransferase (COMT), caffeoyl CoA O-methyltransferase (CCoAOMT), hydroxycinnamate CoA ligase (4CL), cinnamoyl-CoA reductase (CCR) and cinnamyl alcohol dehydrogenase (CAD). The comparative analysis of these genes with those described in other species could be used as molecular markers for breeding as well as for the manipulation of lignin metabolism in sugarcane.
引用
收藏
页码:235 / 241
页数:7
相关论文