Microcrystalline silicon-oxygen alloys for application in silicon solar cells and modules

被引:98
|
作者
Lambertz, A. [1 ]
Smirnov, V. [1 ]
Merdzhanova, T. [1 ]
Ding, K. [1 ]
Haas, S. [1 ]
Jost, G. [1 ]
Schropp, R. E. I. [2 ]
Finger, F. [1 ]
Rau, U. [1 ]
机构
[1] Forschungszentrum Julich, IEK5 Photovolta, D-52425 Julich, Germany
[2] Univ Utrecht, Debye Inst Nanomat Sci, NL-5656 AE Eindhoven, Netherlands
关键词
mu c-SiOx:H; Intermediate reflector; Photon management; Tandem cells; Hetero junction cells; Solar modules; MU-C-SIOX/H; AMORPHOUS-SILICON; ZINC-OXIDE; OPTOELECTRONIC PROPERTIES; LAYER; SIMULATION; BUFFER; FILMS;
D O I
10.1016/j.solmat.2013.05.053
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Microcrystalline silicon oxide (mu c-SiOx:H) alloys prepared by plasma enhanced chemical vapor deposition (PECVD) represent a versatile material class for opto-electronic applications especially for thin-film and wafer based silicon solar cells. The material is a phase mixture of microcrystalline silicon (pc-Si:H) and amorphous silicon oxide (a-SiOx:H). The possibility to enhance the optical band gap energy and to adjust the refractive index over a considerable range, together with the possibility to dope the material p-type as well as n-type, makes mu c-SiOx:H an ideal material for the application as window layer, as intermediate reflector (IR), and as back reflector in thin-film silicon solar cells. Analogously, mu c-SiOx:H is a suitable material for p- and n-type contact layers in silicon hetero junction (SHJ) solar cells. The present paper gives an overview on the range of physical parameters (refractive index, optical band gap, conductivity) which can be covered by this material by variation of the deposition conditions. The paper focuses on the interdependence between these material properties and optical improvements for amorphous silicon/ microcrystalline silicon (a-Si:H/mu c-Si:H) tandem solar cells prepared on different substrates, such as Asahi (VU) and sputtered ZnO:Al. It gives a guideline on possible optical gains when using doped mu c-SiOx:H in silicon based solar cells. As intermediate reflector in a-Si:H/mu c-Si:H tandem cells mu c-SiOx:H leads to an effective transfer of short circuit current generation from the bottom cell to the top tell resulting in a possible thickness reduction of the top cell by 40%. Within another series of solar cells shown in this paper a short circuit current density of 14.1 mA/cm(2) for an a-Si:H/mu c-Si:H tandem solar cell with a mu c-SiOx:H intermediate reflector is demonstrated. A SHJ solar cell on a flat (non-textured) wafer using p- and n-type doped pc-SiOx:H contact layers with an effective area efficiency of 19.0% is also presented. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:134 / 143
页数:10
相关论文
共 50 条
  • [41] IONICITY PROBLEM OF THE SILICON-OXYGEN BOND
    高孝恢
    杨频
    邹祖荣
    Science Bulletin, 1984, (05) : 708 - 709
  • [42] IONICITY PROBLEM OF THE SILICON-OXYGEN BOND
    GAO, XH
    YANG, P
    ZOU, ZR
    KEXUE TONGBAO, 1984, 29 (05): : 708 - 709
  • [43] THE OSCILLATIONS OF SILICON-OXYGEN TETRAHEDRON CHAINS
    LAZAREV, AN
    OPTIKA I SPEKTROSKOPIYA, 1958, 4 (06): : 805 - 806
  • [44] Microcrystalline silicon oxide (μc-SiOx:H) alloys: A versatile material for application in thin film silicon single and tandem junction solar cells
    Smirnov, V.
    Lambertz, A.
    Grootoonk, B.
    Carius, R.
    Finger, F.
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 2012, 358 (17) : 1954 - 1957
  • [45] Microcrystalline silicon carbide window layers in thin film silicon solar cells
    Chen, T.
    Huang, Y.
    Dasgupta, A.
    Luysberg, M.
    Houben, L.
    Yang, D.
    Carius, R.
    Finger, F.
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2012, 98 : 370 - 378
  • [46] Application of n-type microcrystalline silicon oxide as back reflector of crystalline silicon heterojunction solar cells
    Nakada, Kazuyoshi
    Miyajima, Shinsuke
    Konagai, Makoto
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2015, 54 (08)
  • [47] Amorphous silicon solar cells with stable protocrystalline silicon and unstable microcrystalline silicon at the onset of a microcrystalline regime as i-layers
    Ahn, JY
    Lim, KS
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 2005, 351 (8-9) : 748 - 753
  • [48] The effect of superlattice buffer of microcrystalline silicon solar cells
    Ito, M
    Kondo, M
    Matsuda, A
    PROCEEDINGS OF 3RD WORLD CONFERENCE ON PHOTOVOLTAIC ENERGY CONVERSION, VOLS A-C, 2003, : 2726 - 2729
  • [49] High-rate microcrystalline silicon for solar cells
    Smit, C
    Korevaar, BA
    Petit, AMHN
    van Swaaij, RACMM
    Kessels, WMM
    van de Sanden, MCM
    CONFERENCE RECORD OF THE TWENTY-NINTH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE 2002, 2002, : 1170 - 1173
  • [50] Plasmonic-enhanced microcrystalline silicon solar cells
    Kumawat, Uttam K.
    Kumar, Kamal
    Mishra, Sumakesh
    Dhawan, Anuj
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2020, 37 (02) : 495 - 504