Microcrystalline silicon-oxygen alloys for application in silicon solar cells and modules

被引:98
|
作者
Lambertz, A. [1 ]
Smirnov, V. [1 ]
Merdzhanova, T. [1 ]
Ding, K. [1 ]
Haas, S. [1 ]
Jost, G. [1 ]
Schropp, R. E. I. [2 ]
Finger, F. [1 ]
Rau, U. [1 ]
机构
[1] Forschungszentrum Julich, IEK5 Photovolta, D-52425 Julich, Germany
[2] Univ Utrecht, Debye Inst Nanomat Sci, NL-5656 AE Eindhoven, Netherlands
关键词
mu c-SiOx:H; Intermediate reflector; Photon management; Tandem cells; Hetero junction cells; Solar modules; MU-C-SIOX/H; AMORPHOUS-SILICON; ZINC-OXIDE; OPTOELECTRONIC PROPERTIES; LAYER; SIMULATION; BUFFER; FILMS;
D O I
10.1016/j.solmat.2013.05.053
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Microcrystalline silicon oxide (mu c-SiOx:H) alloys prepared by plasma enhanced chemical vapor deposition (PECVD) represent a versatile material class for opto-electronic applications especially for thin-film and wafer based silicon solar cells. The material is a phase mixture of microcrystalline silicon (pc-Si:H) and amorphous silicon oxide (a-SiOx:H). The possibility to enhance the optical band gap energy and to adjust the refractive index over a considerable range, together with the possibility to dope the material p-type as well as n-type, makes mu c-SiOx:H an ideal material for the application as window layer, as intermediate reflector (IR), and as back reflector in thin-film silicon solar cells. Analogously, mu c-SiOx:H is a suitable material for p- and n-type contact layers in silicon hetero junction (SHJ) solar cells. The present paper gives an overview on the range of physical parameters (refractive index, optical band gap, conductivity) which can be covered by this material by variation of the deposition conditions. The paper focuses on the interdependence between these material properties and optical improvements for amorphous silicon/ microcrystalline silicon (a-Si:H/mu c-Si:H) tandem solar cells prepared on different substrates, such as Asahi (VU) and sputtered ZnO:Al. It gives a guideline on possible optical gains when using doped mu c-SiOx:H in silicon based solar cells. As intermediate reflector in a-Si:H/mu c-Si:H tandem cells mu c-SiOx:H leads to an effective transfer of short circuit current generation from the bottom cell to the top tell resulting in a possible thickness reduction of the top cell by 40%. Within another series of solar cells shown in this paper a short circuit current density of 14.1 mA/cm(2) for an a-Si:H/mu c-Si:H tandem solar cell with a mu c-SiOx:H intermediate reflector is demonstrated. A SHJ solar cell on a flat (non-textured) wafer using p- and n-type doped pc-SiOx:H contact layers with an effective area efficiency of 19.0% is also presented. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:134 / 143
页数:10
相关论文
共 50 条
  • [1] APPLICATION OF PLASMA DEPOSITED NANOCOMPOSITE SILICON SUBOXIDES AND MICROCRYSTALLINE SILICON ALLOYS TO HETEROJUNCTION SOLAR CELLS
    Mueller, Thomas
    Schwertheim, Stefan
    Meusinger, Katrina
    Wdowiak, Boguslaw
    Klimkeit, Ruediger
    Fahrner, Wolfgang R.
    2009 34TH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE, VOLS 1-3, 2009, : 2418 - 2422
  • [2] Silicontetrachloride based microcrystalline silicon for application in thin film silicon solar cells
    Lejeune, M
    Beyer, W
    Carius, R
    Müller, J
    Rech, B
    THIN SOLID FILMS, 2004, 451 : 280 - 284
  • [3] High critical oxygen concentration in microcrystalline silicon solar cells
    Merdzhanova, Tsvetelina
    Woerdenweber, Jan
    Beyer, Wolfhard
    Zastrow, Uwe
    Stiebig, Helmut
    Gordijn, Aad
    PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2010, 4 (11): : 323 - 325
  • [4] Nanocrystalline silicon-oxygen based tunneling recombination junctions in perovskite/silicon heterojunction tandem solar cells
    Li, Yuxiang
    Wang, Xuejiao
    Xu, Qiaojing
    Li, Yucheng
    Zhang, Yubo
    Han, Wei
    Sun, Cong
    Zhu, Zhao
    Huang, Qian
    Shi, Biao
    Zhao, Ying
    Zhang, Xiaodan
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2023, 262
  • [5] Semitransparent solar modules based on amorphous and microcrystalline silicon
    Ablayev, G. M.
    Kosarev, A. I.
    Kukin, A. V.
    Semerukhin, M. Y.
    Shvarts, M. Z.
    Terukov, E. I.
    Zhilina, D. V.
    16TH RUSSIAN YOUTH CONFERENCE ON PHYSICS AND ASTRONOMY (PHYSICA.SPB/2013), 2014, 572
  • [6] Microcrystalline silicon thin film solar modules on glass
    Repmann, T.
    Sehrbrock, B.
    Zahren, C.
    Siekmann, H.
    Rech, B.
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2006, 90 (18-19) : 3047 - 3053
  • [7] Hydrogenated microcrystalline silicon for solar cells
    Sharafutdinov, R. G.
    Shchukin, V. G.
    Semenova, O. I.
    INORGANIC MATERIALS, 2012, 48 (05) : 445 - 450
  • [8] Hydrogenated microcrystalline silicon for solar cells
    R. G. Sharafutdinov
    V. G. Shchukin
    O. I. Semenova
    Inorganic Materials, 2012, 48 : 445 - 450
  • [9] Intrinsic microcrystalline silicon for solar cells
    Inst. fur Schicht-und Lonentechnik, Forschungszentrum Jülich, DE-52425 Jülien, Germany
    Solid State Phenomena, 1999, 67 : 101 - 106
  • [10] Amorphous and microcrystalline silicon solar cells
    Wagner, S
    Carlson, DE
    Branz, HM
    PHOTOVOLTAICS FOR THE 21ST CENTURY, 1999, 99 (11): : 219 - 231