Nonlinear dynamics investigation in parameter planes of a periodically forced compound KdV-Burgers equation

被引:14
|
作者
Rech, Paulo C. [1 ]
机构
[1] Univ Estado Santa Catarina, Dept Fis, BR-89219710 Joinville, Brazil
来源
EUROPEAN PHYSICAL JOURNAL B | 2013年 / 86卷 / 08期
关键词
SOLITARY-WAVE SOLUTIONS; MODEL;
D O I
10.1140/epjb/e2013-40238-5
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Parameter plane plots related to a periodically forced compound Korteweg-de Vries-Burgers system, which is modeled by a third-order partial differential equation, are reported. It is shown that typical periodic structures embedded in a chaotic region in these parameter planes, organize themselves in different ways. There are bifurcation sequences whose periods have a well-defined law of formation, that may be written in a closed form, and there are bifurcation sequences self-organized in period-adding cascades.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] EXISTENCE OF A STATIONARY SOLUTION OF THE KDV-BURGERS EQUATION
    KITADA, A
    UMEHARA, H
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1988, 57 (05) : 1855 - 1856
  • [32] Approximate Damped Oscillatory Solutions for Compound KdV-Burgers Equation and Their Error Estimates
    Zhang, Wei-guo
    Zhao, Yan
    Teng, Xiao-yan
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2012, 28 (02): : 305 - 324
  • [33] Approximate damped oscillatory solutions for compound KdV-Burgers equation and their error estimates
    Wei-guo Zhang
    Yan Zhao
    Xiao-yan Teng
    Acta Mathematicae Applicatae Sinica, English Series, 2012, 28 : 305 - 324
  • [34] A travelling wave solution to the KdV-Burgers equation
    Demiray, H
    APPLIED MATHEMATICS AND COMPUTATION, 2004, 154 (03) : 665 - 670
  • [35] Parameter-transformation relations for travelling wave solutions of Kdv-Burgers equation
    朱如曾
    Chinese Science Bulletin, 1995, (03) : 202 - 205
  • [36] Space Time Method for Solving KdV and KdV-Burgers' Equation
    Cao, Yanhua
    Wu, Xiaoran
    Jia, Zhile
    MECHANICS OF SOLIDS, 2024, 59 (01) : 268 - 279
  • [37] Existence of travelling wavefronts of the KdV-Burgers equation
    Fu, Yanggeng
    Liu, Zhengrong
    APPLIED MATHEMATICS LETTERS, 2011, 24 (06) : 897 - 900
  • [38] The solitary wave solutions to KdV-Burgers equation
    Lü, KP
    Shi, YR
    Duan, WS
    Zhao, JB
    ACTA PHYSICA SINICA, 2001, 50 (11) : 2074 - 2076
  • [39] Solitary wave solutions to KdV-Burgers equation
    Lu, K.P.
    Shi, Y.R.
    Duan, W.S.
    Zhao, J.B.
    Wuli Xuebao/Acta Physica Sinica, 2001, 50 (11):
  • [40] EXACT-SOLUTIONS TO THE KDV-BURGERS EQUATION
    JEFFREY, A
    MOHAMAD, MNB
    WAVE MOTION, 1991, 14 (04) : 369 - 375