Bidisperse Nanospheres Jammed on a Liquid Surface

被引:10
|
作者
Gao, Yige [1 ]
Kim, Paul Y. [2 ]
Hoagland, David A. [1 ]
Russell, Thomas P. [1 ,2 ,3 ,4 ]
机构
[1] Univ Massachusetts, Dept Polymer Sci & Engn, Amherst, MA 01003 USA
[2] Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA
[3] Beijing Univ Chem Technol, Beijing Adv Innovat Ctr Soft Matter Sci & Engn, Beijing 100029, Peoples R China
[4] Tohoku Univ, Adv Inst Mat Res, WPI AIMR, Sendai, Miyagi 9808577, Japan
基金
美国国家科学基金会;
关键词
electron microscopy; condensed matter; interfacial jamming; nanoparticles; ionic liquid; PHASE-SEPARATION; HARD; PACKINGS; DYNAMICS; SPHERES;
D O I
10.1021/acsnano.0c04682
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Jammed packings of bidisperse nanospheres were assembled on a nonvolatile liquid surface and visualized to the single-particle scale by using an in situ scanning electron microscopy method. The PEGylated silica nanospheres, mixed at different number fractions and size ratios, had large enough in-plane mobilities prior to jamming to form uniform monolayers reproducibly. From the collected nanometer-resolution images, local order and degree of mixing were assessed by standard metrics. For equimolar mixtures, a large-to-small size ratio of about 13 minimized correlated metrics for local orientational and positional order, as previously predicted in simulations of bidisperse disk jamming. Despite monolayer uniformity, structural and depletion interactions caused spheres of a similar size to cluster, a feature evident at size ratios above 2. Uniform nanoparticle monolayers of high packing disorder are sought in many liquid interface technologies, and these experiments outlined key design principles, buttressing extensive theory/simulation literature on the topic.
引用
收藏
页码:10589 / 10599
页数:11
相关论文
共 50 条
  • [41] Surface coating effects on the assembly of gold nanospheres
    Meyer, Kent A.
    Polemi, Alessia
    Shuford, Kevin L.
    Whitten, William B.
    Shaw, Robert W.
    NANOTECHNOLOGY, 2010, 21 (41)
  • [42] LIQUID-CRYSTAL PHASE-TRANSITIONS IN BIDISPERSE HARD-ROD SYSTEMS
    STROOBANTS, A
    JOURNAL OF PHYSICS-CONDENSED MATTER, 1994, 6 : A285 - A288
  • [43] THEORY OF THE ISOTROPIC LIQUID-CRYSTAL PHASE-SEPARATION FOR A SOLUTION OF BIDISPERSE RODLIKE MACROMOLECULES
    ODIJK, T
    LEKKERKERKER, HNW
    JOURNAL OF PHYSICAL CHEMISTRY, 1985, 89 (10): : 2090 - 2096
  • [44] Modeling of laminar mono- and bidisperse liquid oxygen/hydrogen spray flames in the counterflow configuration
    Schlotz, D
    Gutheil, E
    COMBUSTION SCIENCE AND TECHNOLOGY, 2000, 158 : 195 - 210
  • [45] The influence of surface forces on shear-induced tracer diffusion in mono and bidisperse suspensions
    Meunier, A.
    Bossis, G.
    EUROPEAN PHYSICAL JOURNAL E, 2008, 25 (02): : 187 - 199
  • [46] The influence of surface forces on shear-induced tracer diffusion in mono and bidisperse suspensions
    A. Meunier
    G. Bossis
    The European Physical Journal E, 2008, 25 : 187 - 199
  • [47] Numerical Investigation of Funicular Liquid Bridges between Three Spherical Grains in a Bidisperse Particulate System
    Wang, Shaohan
    Wang, Ji-Peng
    Ge, Shangqi
    Li, Xianwei
    Dadda, Abdelali
    LANGMUIR, 2024, 40 (24) : 12744 - 12754
  • [48] Surface functionalized biocompatible magnetic nanospheres for cancer hyperthermia
    Liu, Xianqiao
    Novosad, Valentyn
    Rozhkova, Elena A.
    Chen, Haitao
    Yefremenko, Volodymyr
    Pearson, John
    Torno, Michael
    Bader, Sam D.
    Rosengart, Axel J.
    IEEE TRANSACTIONS ON MAGNETICS, 2007, 43 (06) : 2462 - 2464
  • [49] Channeling motion of gold nanospheres on a rippled glassed surface
    Gnecco, Enrico
    Nita, Pawel
    Casado, Santiago
    Pimentel, Carlos
    Mougin, Karine
    Giordano, Maria Caterina
    Repetto, Diego
    de Mongeot, Francesco Buatier
    NANOTECHNOLOGY, 2014, 25 (48)
  • [50] Surface redox chemistry and mechanochemistry of insulating polystyrene nanospheres
    Varley, Thomas S.
    Rosillo-Lopez, Martin
    Sehmi, Sandeep
    Hollingsworth, Nathan
    Holt, Katherine B.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (03) : 1837 - 1846