A novel high-order time-domain scheme for three-dimensional Maxwell's equations

被引:3
|
作者
Huang, Zhi-Xiang [1 ]
Sha, Wei E. I. [1 ]
Wu, Xian-Liang [1 ]
Chen, Ming-Sheng [1 ]
机构
[1] Anhui Univ, Minist Educ, Key Lab Intelligent Comp & Signal Proc, Hefei 230039, Peoples R China
关键词
high-order time domain scheme; symplectic integrator propagator; finite-difference time domain (FDTD);
D O I
10.1002/mop.21563
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A novel high-order time-domain scheme with a four-stage optimized symplectic integrator propagator is presented for 3D electro-magnetic scattering problems. Tire scheme is nondissipative and does not require more storage than Me classical finite-difference time-domain (FDTD) method. The numerical results show the scheme has better stability and more efficiency than the classical FDTD method. (c) 2006 Wiley Periodicals. Inc.
引用
收藏
页码:1123 / 1125
页数:3
相关论文
共 50 条
  • [31] A high-order accurate scheme for Maxwell's equations with a generalized dispersive material model
    Angel, Jordan B.
    Banks, Jeffrey W.
    Henshaw, William D.
    Jenkinson, Michael J.
    Kildishev, Alexander, V
    Kovacic, Gregor
    Prokopeva, Ludmila J.
    Schwendeman, Donald W.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 378 : 411 - 444
  • [32] Convergence of a discontinuous Galerkin scheme for the mixed time-domain Maxwell's equations in dispersive media
    Lanteri, Stephane
    Scheid, Claire
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2013, 33 (02) : 432 - 459
  • [33] A hybrid ADI and SBTD scheme for unconditionally stable time-domain solutions of Maxwell's equations
    Huang, Zhenyu
    Pan, Guangwen
    Diaz, Rodolfo
    [J]. IEEE TRANSACTIONS ON ADVANCED PACKAGING, 2008, 31 (01): : 219 - 226
  • [34] Recent Advances in Time-Domain Maxwell's Equations in Metamaterials
    Huang, Yunqing
    Li, Jichun
    [J]. HIGH PERFORMANCE COMPUTING AND APPLICATIONS, 2010, 5938 : 48 - 57
  • [35] New multisymplectic self-adjoint scheme and its composition scheme for the time-domain Maxwell's equations
    Cai, Jiaxiang
    Wang, Yushun
    Wang, Bin
    Jiang, Bin
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2006, 47 (12)
  • [36] ANALYSIS OF TIME-DOMAIN MAXWELL'S EQUATIONS IN BIPERIODIC STRUCTURES
    Bao, Gang
    Hu, Bin
    Li, Peijun
    Wang, Jue
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2020, 25 (01): : 259 - 286
  • [37] Discontinuous Galerkin method for the time-domain Maxwell's equations
    Kabakian, AV
    Shankar, VY
    Hall, VF
    [J]. COMPUTATIONAL FLUID DYNAMICS 2002, 2003, : 153 - 158
  • [38] A time-domain finite element method for Maxwell's equations
    Van, T
    Wood, AH
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2004, 42 (04) : 1592 - 1609
  • [39] Time-domain method analyzes high-order PLLs
    Ku, FN
    [J]. MICROWAVES & RF, 1996, 35 (08) : 89 - &
  • [40] A nondiffusive finite volume scheme for the three-dimensional Maxwell's equations on unstructured meshes
    Piperno, S
    Remaki, M
    Fezoui, L
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 39 (06) : 2089 - 2108