Hierarchical composite microstructures fabricated at the air/liquid interface through multilevel self-assembly of block copolymers

被引:6
|
作者
Zhao, Xingjuan [1 ]
Wang, Qian [1 ]
Yu, Xiaoli [1 ]
Lee, Yong-Iii [2 ]
Liu, Hong-Guo [1 ]
机构
[1] Shandong Univ, Educ Minist, Key Lab Colloid & Interface Chem, Jinan 250100, Peoples R China
[2] Changwon Natl Univ, Dept Chem, Anastro Lab, Chang Won 641773, South Korea
基金
中国国家自然科学基金;
关键词
Microstructure; Block copolymer; Self-assembly; Composite thin film; SERS; Catalysis; AIR-WATER-INTERFACE; AIR/WATER INTERFACE; DIBLOCK COPOLYMERS; THIN-FILMS; SPONTANEOUS EMULSIFICATION; MICROFLUIDIC FABRICATION; POLY(ACRYLIC ACID); NANOPARTICLES; MICELLES; NANOSTRUCTURES;
D O I
10.1016/j.colsurfa.2016.12.033
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Hierarchical composite microstructures of block copolymers, polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP)/Ag have been fabricated successfully at the air/liquid interface through a self-assembly and adsorption process. The films with various morphologies including foam, nanorod and nanowire array, hollow sphere, and nanosphere were obtained. These morphologies are closely related to the aggregates formed in the aqueous phase, such as microcapsules, cylindrical micelles, vesicles and spherical micelles, which can be controlled by tuning the critical packing parameters of the amphiphilic block copolymer molecules through changing the concentration of Ag+ ions in the aqueous solution. The length of the P2VP blocks in the PS-b-P2VPs exerts great influences on the self-assembly behavior of the polymers and the final microstructures, which provides a deep insight into the formation mechanism of the microstructures. Additionally, these hybrid films doped with silver nanoparticles provide potential application in surface enhanced Raman scattering (SERS) and catalysis. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:171 / 180
页数:10
相关论文
共 50 条
  • [41] Self-assembly of copolymers containing a polypeptide block
    Castelletto, V.
    Newby, G. E.
    Zhu, Z.
    Hamley, I. W.
    Noirez, L.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2011, 67 : C230 - C230
  • [42] Synthesis and Self-Assembly of Conjugated Block Copolymers
    Xiao, Lin-Lin
    Zhou, Xu
    Yue, Kan
    Guo, Zi-Hao
    POLYMERS, 2021, 13 (01) : 1 - 20
  • [43] Phase transition and self-assembly in block copolymers
    Hashimoto, T
    MACROMOLECULAR SYMPOSIA, 2001, 174 : 69 - 83
  • [44] Self-assembly of chiral block and gradient copolymers
    Bloksma, Meta M.
    Hoeppener, Stephanie
    D'Haese, Cecile
    Kempe, Kristian
    Mansfeld, Ulrich
    Paulus, Renzo M.
    Gohy, Jean-Francois
    Schubert, Ulrich S.
    Hoogenboom, Richard
    SOFT MATTER, 2012, 8 (01) : 165 - 172
  • [45] Controlling the self-assembly of functional block copolymers
    Campos, Luis M.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 247
  • [46] Limits of Directed Self-Assembly in Block Copolymers
    Gadelrab, Karim R.
    Ding, Yi
    Pablo-Pedro, Ricardo
    Chen, Hsieh
    Gotrik, Kevin W.
    Tempel, David G.
    Ross, Caroline A.
    Alexander-Katz, Alfredo
    NANO LETTERS, 2018, 18 (06) : 3766 - 3772
  • [47] Organoboron block copolymers: Synthesis and self-assembly
    Cui, Chengzhong
    Jaekle, Frieder
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2009, 237
  • [48] Controlling the self-assembly of polyelectrolyte block copolymers
    Campos, Luis M.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 248
  • [49] Orthogonal Self-Assembly in Folding Block Copolymers
    Hosono, Nobuhiko
    Gillissen, Martijn A. J.
    Li, Yuanchao
    Sheiko, Sergei S.
    Palmans, Anja R. A.
    Meijer, E. W.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (01) : 501 - 510
  • [50] Synthesis and self-assembly of block copolymers.
    Hillmyer, MA
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1999, 218 : U663 - U663