Theoretical study on the electronic and transport properties of top and edge contact MoSi2N4/Au heterostructure

被引:3
|
作者
Meng, Yan [1 ]
Xu, Yulong [1 ]
Zhang, Jing [1 ]
Sun, Jie [1 ]
Zhang, Guangping [2 ]
Leng, Jiancai [1 ]
机构
[1] Qilu Univ Technol, Shandong Acad Sci, Int Sch Optoelect Engn, Jinan 250353, Shandong, Peoples R China
[2] Shandong Normal Univ, Sch Phys & Elect, Shandong Key Lab Med Phys & Image Proc, Jinan 250358, Shandong, Peoples R China
关键词
First principles; Au heterostructure; Band structure; Schottky barrier; Electronic transport; PHOSPHORENE; TRANSISTOR; MOBILITY;
D O I
10.1016/j.physleta.2022.128535
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
First principles calculations are applied to explore the electronic and transport properties of top and edge contact MoSi2N4/Au heterostructure. The calculated results indicate the fluctuations similar to 0.15 eV and 0.56 eV of binding energy and Schottky barrier height are caused by the different stacking orders of MoSi2N4/Au, respectively. N-type Schottky contact is formed as MoSi2N4 top contact with Au and the most stable configuration possesses the barrier height similar to 0.52 eV from HSE calculation, which is close to that obtained by calculating the electrons transmission spectrum (similar to 0.42 eV). The electronic and transport properties of edge contact MoSi2N4/Au heterostructure rely on the edge configuration of MoSi2N4. In contrary to top contact, p-type Schottky contact is found in edge contact MoSi2N4/Au heterostructure and the barrier heights are able to decrease to similar to 0.15 eV.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Substitutional transition metal doping in MoSi2N4 monolayer: structural, electronic and magnetic properties
    Abdelati, Mohamed A.
    Maarouf, Ahmed A.
    Fadlallah, Mohamed M.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2022, 24 (05) : 3035 - 3042
  • [22] Effect of vacancy defects on the electronic and mechanical properties of two-dimensional MoSi2N4
    Dastider, Ankan Ghosh
    Rasul, Ashiqur
    Rahman, Ehsanur
    Alam, Md. Kawsar
    RSC ADVANCES, 2023, 13 (08) : 5307 - 5316
  • [23] Tuning transport coefficients of monolayer MoSi2N4 with biaxial strain
    郭小姝
    郭三栋
    Chinese Physics B, 2021, (06) : 533 - 538
  • [24] Two-Dimensional Metal/Semiconductor Contact in a Janus MoSH/MoSi2N4 van der Waals Heterostructure
    Nguyen, Chuong, V
    Nguyen, Cuong Q.
    Son-Tung Nguyen
    Ang, Yee Sin
    Hieu, Nguyen, V
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2022, 13 (11): : 2576 - 2582
  • [25] A van der Waals heterostructure of MoS2/MoSi2N4: a first-principles study
    Bafekry, A.
    Faraji, M.
    Ziabari, A. Abdollahzadeh
    Fadlallah, M. M.
    Nguyen, Chuong, V
    Ghergherehchi, M.
    Feghhi, S. A. H.
    NEW JOURNAL OF CHEMISTRY, 2021, 45 (18) : 8291 - 8296
  • [26] Optoelectronic properties of bilayer van der Waals WSe2/MoSi2N4 heterostructure:A first-principles study
    Zhang, Zhengwen
    Chen, Guoxing
    Song, Aiqin
    Cai, Xiaolin
    Yu, Weiyang
    Jia, Xingtao
    Jia, Yu
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2022, 144
  • [27] Tunable Electronic Property and Robust Type-II Feature in Blue Phosphorene/MoSi2N4 Bilayer Heterostructure
    Cai, Xiaolin
    Zhang, Zhengwen
    Chen, Guoxing
    Wang, Qin
    Jia, Yu
    CRYSTALS, 2022, 12 (10)
  • [28] Strained MoSi2N4 Monolayers with Excellent Solar Energy Absorption and Carrier Transport Properties
    Jian, Chao-chao
    Ma, Xiangchao
    Zhang, Jianqi
    Yong, Xin
    JOURNAL OF PHYSICAL CHEMISTRY C, 2021, 125 (28): : 15185 - 15193
  • [29] Valley-dependent properties of monolayer MoSi2N4, WSi2N4, and MoSi2As4
    Li, Si
    Wu, Weikang
    Feng, Xiaolong
    Guan, Shan
    Feng, Wanxiang
    Yao, Yugui
    Yang, Shengyuan A.
    PHYSICAL REVIEW B, 2020, 102 (23)
  • [30] Modulating the electronic properties and band alignments of the arsenene/MoSi2N4 van der Waals heterostructure via applying strain and electric field
    Zhao, Jun
    Qi, Yunxi
    Yao, Can
    Zeng, Hui
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2023, 25 (48) : 33023 - 33030