Effect of elevated CO2, temperature and drought on photosynthesis of nodulated alfalfa during a cutting regrowth cycle

被引:62
|
作者
Erice, G
Irigoyen, JJ
Pérez, P
Martínez-Carrasco, R
Sánchez-Díaz, M
机构
[1] Univ Navarra, Fac Ciencias & Farm, Dept Fisiol Vegetal, Navarra 31008, Spain
[2] CSIC, Inst Recursos Nat & Agrobiol Salamanca, Salamanca 37071, Spain
关键词
D O I
10.1111/j.1399-3054.2006.00599.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Rising atmospheric CO2 may increase potential net leaf photosynthesis under short-term exposure, but this response decreases under long-term exposure because plants acclimate to elevated CO2 concentrations through a process known as downregulation. One of the main factors that may influence this phenomenon is the balance between sources and sinks in the plant. The usual method of managing a forage legume like alfalfa requires the cutting of shoots and subsequent regrowth, which alters the source/sink ratio and thus photosynthetic behaviour. The aim of this study was to determine the effect of CO2 (ambient, around 350 vs. 700 mu mol mol(-1)), temperature (ambient vs. ambient + 4 degrees C) and water availability (well-irrigated vs. partially irrigated) on photosynthetic behaviour in nodulated alfalfa before defoliation and after 1 month of regrowth. At the end of vegetative normal growth, plants grown under conditions of elevated CO2 showed photosynthetic acclimation with lower photosynthetic rates, V-cmax and ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) activity. This decay was probably a consequence of a specific rubisco protein reduction and/or inactivation. In contrast, high CO2 during regrowth did not change net photosynthetic rates or yield differences in V-cmax or rubisco total activity. This absence of photosynthetic acclimation was directly associated with the new source-sink status of the plants during regrowth. After cutting, the higher root/shoot ratio in plants and remaining respiration can function as a strong sink for photosynthates, avoiding leaf sugar accumulation, the negative feed-back control of photosynthesis, and as a consequence, photosynthetic downregulation.
引用
收藏
页码:458 / 468
页数:11
相关论文
共 50 条
  • [41] The effect of elevated [CO2] on photosynthesis, carbon and nitrogen allocation in cherry leaves
    Centritto, M
    Lee, H
    Jarvis, P
    PHOTOSYNTHESIS: MECHANISMS AND EFFECTS, VOLS I-V, 1998, : 3809 - 3812
  • [42] Does elevated CO2 mitigate the salt effect on photosynthesis in barley cultivars?
    Perez-Lopez, U.
    Robredo, A.
    Lacuesta, M.
    Mena-Petite, A.
    Munoz-Rueda, A.
    PHOTOSYNTHESIS RESEARCH, 2007, 91 (2-3) : 315 - 316
  • [43] Interactions of elevated CO2 concentration and drought stress on photosynthesis in Eucalyptus cladocalyx F-Muell.
    Palanisamy, K
    PHOTOSYNTHETICA, 1999, 36 (04) : 635 - 638
  • [44] Interactive effects of elevated CO2, warming, and drought on photosynthesis of Deschampsia flexuosa in a temperate heath ecosystem
    Albert, K. R.
    Ro-Poulsen, H.
    Mikkelsen, T. N.
    Michelsen, A.
    van der Linden, L.
    Beier, C.
    JOURNAL OF EXPERIMENTAL BOTANY, 2011, 62 (12) : 4253 - 4266
  • [45] Growth in elevated CO2 protects photosynthesis against high-temperature damage
    Taub, DR
    Seemann, JR
    Coleman, JS
    PLANT CELL AND ENVIRONMENT, 2000, 23 (06): : 649 - 656
  • [46] Photosynthesis and plant growth at elevated levels of CO2
    Makino, A
    Mae, T
    PLANT AND CELL PHYSIOLOGY, 1999, 40 (10) : 999 - 1006
  • [47] MODELING PHOTOSYNTHESIS OF COTTON GROWN IN ELEVATED CO2
    HARLEY, PC
    THOMAS, RB
    REYNOLDS, JF
    STRAIN, BR
    PLANT CELL AND ENVIRONMENT, 1992, 15 (03): : 271 - 282
  • [48] Effects of elevated CO2 and high temperature on single leaf and canopy photosynthesis of rice
    Lin, WH
    Bai, KZ
    Kuang, TY
    ACTA BOTANICA SINICA, 1999, 41 (06): : 624 - 628
  • [49] Elevated [CO2] raises the temperature optimum of photosynthesis and thus promotes net photosynthesis of winter wheat and rice
    Lv, Chunhua
    Huang, Yao
    Sun, Wenjuan
    Yu, Lingfei
    Hu, Zhenghua
    PHYSIOLOGIA PLANTARUM, 2022, 174 (04)
  • [50] Effect of elevated [CO2] on photosynthesis and growth of snow gum (Eucalyptus pauciflora) seedlings during winter and spring
    Roden, JS
    Egerton, JJG
    Ball, MC
    AUSTRALIAN JOURNAL OF PLANT PHYSIOLOGY, 1999, 26 (01): : 37 - 46