Self-catalyzed growth of GaAs nanowires on silicon by HYPE

被引:0
|
作者
Dong, Zhenning [1 ,2 ]
Andre, Yamina [1 ,2 ,3 ]
Dubrovskii, Vladimir [4 ,5 ]
Bougerol, Catherine [6 ,7 ]
Monier, Guillaume [1 ,2 ]
Ramdani, Reda [1 ,2 ]
Trassoudaine, Agnes [1 ,2 ,8 ]
Leroux, Christine [9 ,10 ]
Castelluci, Dominique [1 ,2 ]
Gil, Evelyne [1 ,2 ,3 ]
机构
[1] Univ Clermont Ferrand, Clermont Univ, Inst Pascal, F-63000 Clermont Ferrand, France
[2] CNRS, UMR 6602, F-63178 Aubiere, France
[3] ITMO Univ, Kronverkskiy Pr 49, St Petersburg 197101, Russia
[4] St Petersburg Acad Univ, Khlopina 8-3, St Petersburg 194021, Russia
[5] Russian Acad Sci, Ioffe Phys Tech Inst, Polytekhn Heskaya 26, St Petersburg 194021, Russia
[6] Univ Grenoble Alpes, F-38000 Grenoble, France
[7] CNRS, Inst Neel, F-38042 Grenoble, France
[8] Univ Auvergne, Inst Univ Technol, Dep Mesures Phys, F-63178 Aubiere, France
[9] Univ Sud Toulon Var, IM2NP, Bat R,BP 20132, F-83957 La Garde, France
[10] CNRS, UMR 6242, F-83957 La Garde, France
关键词
GaAs; IIVPE; Nanowire; Silicon; Self-catalyzed;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We report on the first self -catalyzed growth of GaAs nanowires on patterned and non -patterned silicon (111) wafers by hydride vapor phase epitaxy (HVPE) with a record elongation rate of 30 !lm/h. The crystalline structure was analyzed using high resolution transmission electron microscopy (HRTEM). Self -catalyzed growth proceeds under gallium rich conditions at low -temperature (600 C). Nanowires exhibit cylindrical rod -like shape morphology with a mean diameter of 50 nm and are randomly distributed.
引用
收藏
页数:1
相关论文
共 50 条
  • [1] Structural Phase Control in Self-Catalyzed Growth of GaAs Nanowires on Silicon (111)
    Krogstrup, Peter
    Popovitz-Biro, Ronit
    Johnson, Erik
    Madsen, Morten Hannibal
    Nygard, Jesper
    Shtrikman, Hadas
    NANO LETTERS, 2010, 10 (11) : 4475 - 4482
  • [2] Arsenic Pathways in Self-Catalyzed Growth of GaAs Nanowires
    Ramdani, Mohammed Reda
    Harmand, Jean Christophe
    Glas, Frank
    Patriarche, Gilles
    Travers, Laurent
    CRYSTAL GROWTH & DESIGN, 2013, 13 (01) : 91 - 96
  • [3] Simulated growth of GaAs nanowires: Catalytic and self-catalyzed growth
    Knyazeva, M. V.
    Nastovjak, A. G.
    Neizvestny, I. G.
    Shwartz, N. L.
    SEMICONDUCTORS, 2015, 49 (01) : 60 - 68
  • [4] Simulated growth of GaAs nanowires: Catalytic and self-catalyzed growth
    M. V. Knyazeva
    A. G. Nastovjak
    I. G. Neizvestny
    N. L. Shwartz
    Semiconductors, 2015, 49 : 60 - 68
  • [5] Tailoring the diameter and density of self-catalyzed GaAs nanowires on silicon
    Matteini, Federico
    Dubrovskii, Vladimir G.
    Rueffer, Daniel
    Tuetuencueoglu, Goezde
    Fontana, Yannik
    Morral, Anna Fontcuberta I.
    NANOTECHNOLOGY, 2015, 26 (10)
  • [6] Simultaneous Selective Area Growth of Wurtzite and Zincblende Self-Catalyzed GaAs Nanowires on Silicon
    Dubrovskii, Vladimir G.
    Kim, Wonjong
    Piazza, Valerio
    Guniat, Lucas
    Morral, Anna Fontcuberta, I
    NANO LETTERS, 2021, 21 (07) : 3139 - 3145
  • [7] The role of As species in self-catalyzed growth of GaAs and GaAsSb nanowires
    Koivusalo, Eero
    Hilska, Joonas
    Galeti, Helder V. A.
    Galvao Gobato, Yara
    Guina, Mircea
    Hakkarainen, Teemu
    NANOTECHNOLOGY, 2020, 31 (46)
  • [8] Deterministic Switching of the Growth Direction of Self-Catalyzed GaAs Nanowires
    Koivusalo, Eero S.
    Hakkarainen, Teemu V.
    Galeti, Helder V. A.
    Gobato, Yara G.
    Dubrovskii, Vladimir G.
    Guina, Mircea D.
    NANO LETTERS, 2019, 19 (01) : 82 - 89
  • [9] Self-catalyzed GaAs nanowires on silicon by hydride vapor phase epitaxy
    Dong, Zhenning
    Andre, Yamina
    Dubrovskii, Vladimir G.
    Bougerol, Catherine
    Leroux, Christine
    Ramdani, Mohammed R.
    Monier, Guillaume
    Trassoudaine, Agnes
    Castelluci, Dominique
    Gil, Evelyne
    NANOTECHNOLOGY, 2017, 28 (12)
  • [10] Nucleation and growth mechanism of self-catalyzed InAs nanowires on silicon
    Gomes, U. P.
    Ercolani, D.
    Zannier, V.
    David, J.
    Gemmi, M.
    Beltram, F.
    Sorba, L.
    NANOTECHNOLOGY, 2016, 27 (25)