Bisection acceleration for the symmetric tridiagonal eigenvalue problem

被引:3
|
作者
Pan, VY
Linzer, E
机构
[1] CUNY Herbert H Lehman Coll, Dept Math & Comp Sci, Bronx, NY 10468 USA
[2] DiviCom, White Plains, NY 10601 USA
基金
美国国家科学基金会;
关键词
symmetric eigenvalue problem; bisection algorithm; divide-and-conquer eigenvalue algorithms; Newton's iteration; convergence acceleration; approximating polynomial zeros;
D O I
10.1023/A:1019146505291
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present new algorithms that accelerate the bisection method for the symmetric tridiagonal eigenvalue problem. The algorithms rely on some new techniques, including a new variant of Newton's iteration that reaches cubic convergence (right from the start) to the well separated eigenvalues and can be further applied to acceleration of some other iterative processes, in particular, of the divide-and-conquer methods for the symmetric tridiagonal eigenvalue problem.
引用
收藏
页码:13 / 39
页数:27
相关论文
共 50 条