Bisection acceleration for the symmetric tridiagonal eigenvalue problem

被引:3
|
作者
Pan, VY
Linzer, E
机构
[1] CUNY Herbert H Lehman Coll, Dept Math & Comp Sci, Bronx, NY 10468 USA
[2] DiviCom, White Plains, NY 10601 USA
基金
美国国家科学基金会;
关键词
symmetric eigenvalue problem; bisection algorithm; divide-and-conquer eigenvalue algorithms; Newton's iteration; convergence acceleration; approximating polynomial zeros;
D O I
10.1023/A:1019146505291
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present new algorithms that accelerate the bisection method for the symmetric tridiagonal eigenvalue problem. The algorithms rely on some new techniques, including a new variant of Newton's iteration that reaches cubic convergence (right from the start) to the well separated eigenvalues and can be further applied to acceleration of some other iterative processes, in particular, of the divide-and-conquer methods for the symmetric tridiagonal eigenvalue problem.
引用
收藏
页码:13 / 39
页数:27
相关论文
共 50 条
  • [1] Bisection acceleration for the symmetric tridiagonal eigenvalue problem
    Victor Y. Pan
    Elliot Linzer
    Numerical Algorithms, 1999, 22 : 13 - 39
  • [2] An observation on bisection software for the symmetric tridiagonal eigenvalue problem
    Kaufman, L
    ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2000, 26 (04): : 520 - 526
  • [3] A Novel Divisional Bisection Method for the Symmetric Tridiagonal Eigenvalue Problem
    Chu, Wei
    Zhao, Yao
    Yuan, Hua
    MATHEMATICS, 2022, 10 (15)
  • [4] SOLVING THE SYMMETRIC TRIDIAGONAL EIGENVALUE PROBLEM ON THE HYPERCUBE
    IPSEN, ICF
    JESSUP, ER
    SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1990, 11 (02): : 203 - 229
  • [5] The generalized eigenvalue problem for tridiagonal symmetric interval matrices
    El-Gebeily, MA
    Abu-Baker, Y
    Elgindi, MB
    INTERNATIONAL JOURNAL OF CONTROL, 1999, 72 (06) : 531 - 535
  • [6] Hybrid hypercube algorithm for the symmetric tridiagonal eigenvalue problem
    Jackson, J.A.
    Liebrock, L.M.
    Ziegler, L.R.
    Conference on Hypercube Concurrent Computers and Applications, 1988,
  • [7] An efficient parallel algorithm for the symmetric tridiagonal eigenvalue problem
    Forjaz, MA
    Ralha, R
    VECTOR AND PARALLEL PROCESSING - VECPAR 2000, 2001, 1981 : 369 - 379
  • [8] Generalized eigenvalue problem for tridiagonal symmetric interval matrices
    Department of Mathematical Sciences, King Fahd Univ. Petrol. and Minerals, Dhahran 31261, Saudi Arabia
    不详
    Int J Control, 6 (531-535):
  • [9] Symmetric Tridiagonal Partial Quadratic Inverse Eigenvalue Problem (SPQIEP)
    Rakshit, Suman
    Khare, Swanand R.
    Datta, Biswa Nath
    2018 FOURTH INTERNATIONAL CONFERENCE ON POWER, SIGNALS, CONTROL AND COMPUTATION (EPSCICON), 2018,
  • [10] The eigenvalue problem for infinite complex symmetric tridiagonal matrices with application
    Ikebe, Yasuhiko
    Asai, Nobuyoshi
    Miyazaki, Yoshinori
    Cai, DongSheng
    Linear Algebra and Its Applications, 241-243 : 599 - 618