Optimal model selection in heteroscedastic regression using piecewise polynomial functions

被引:8
|
作者
Saumard, Adrien [1 ,2 ]
机构
[1] Univ Washington, Dept Stat, Seattle, WA 98195 USA
[2] INRIA Saclay Ile de France, Saclay, France
来源
关键词
Nonparametric regression; hold-out penalty; heteroscedastic noise; random design; optimal model selection; slope heuristics; ORACLE INEQUALITIES; AGGREGATION; PENALTIES; BOUNDS;
D O I
10.1214/13-EJS803
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the estimation of a regression function with random design and heteroscedastic noise in a nonparametric setting. More precisely, we address the problem of characterizing the optimal penalty when the regression function is estimated by using a penalized least-squares model selection method. In this context, we show the existence of a minimal penalty, defined to be the maximum level of penalization under which the model selection procedure totally misbehaves. the optimal penalty is shown to be twice the minimal one and to satisfy a non-asymptotic pathwide oracle inequality with leading constant almost one. Finally, the ideal penalty being unknown in general, we propose a hold-out penalization procedure and show that the latter is asymptotically optimal
引用
收藏
页码:1184 / 1223
页数:40
相关论文
共 50 条
  • [21] Simultaneous variable selection for heteroscedastic regression models
    Zhang, Zhongzhan
    Wang, Darong
    [J]. PROCEEDINGS OF THE INTERNATIONAL SYMPOSIUM ON FINANCIAL ENGINEERING AND RISK MANAGEMENT 2008, 2008, : 141 - 143
  • [22] Near Optimal Heteroscedastic Regression with Symbiotic Learning
    Baby, Dheeraj
    Das, Aniket
    Nagaraj, Dheeraj
    Netrapalli, Praneeth
    [J]. THIRTY SIXTH ANNUAL CONFERENCE ON LEARNING THEORY, VOL 195, 2023, 195
  • [23] Estimation and variable selection in nonparametric heteroscedastic regression
    Yau, P
    Kohn, R
    [J]. STATISTICS AND COMPUTING, 2003, 13 (03) : 191 - 208
  • [24] Estimation and variable selection in nonparametric heteroscedastic regression
    Paul Yau
    Robert Kohn
    [J]. Statistics and Computing, 2003, 13 : 191 - 208
  • [25] Simultaneous variable selection for heteroscedastic regression models
    ZHANG ZhongZhan1 & WANG DaRong2 1College of Applied Sciences
    2The Pilot College
    [J]. Science China Mathematics, 2011, 54 (03) : 515 - 530
  • [26] Stability Analysis and Region-of- Attraction Estimation Using Piecewise Polynomial Lyapunov Functions: Polynomial Fuzzy Model Approach
    Chen, Ying-Jen
    Tanaka, Motoyasu
    Tanaka, Kazuo
    Wang, Hua O.
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2015, 23 (04) : 1314 - 1322
  • [27] Simultaneous variable selection for heteroscedastic regression models
    ZhongZhan Zhang
    DaRong Wang
    [J]. Science China Mathematics, 2011, 54 : 515 - 530
  • [28] Simultaneous variable selection for heteroscedastic regression models
    Zhang ZhongZhan
    Wang DaRong
    [J]. SCIENCE CHINA-MATHEMATICS, 2011, 54 (03) : 515 - 530
  • [29] Development of an optimized trend kriging model using regression analysis and selection process for optimal subset of basis functions
    Lee, Hakjin
    Lee, Duck-Joo
    Kwon, Hyungil
    [J]. AEROSPACE SCIENCE AND TECHNOLOGY, 2018, 77 : 273 - 285
  • [30] The evolution of piecewise polynomial wave functions
    Mark Andrews
    [J]. The European Physical Journal Plus, 132