The lognormal distribution of metal resources in mineral deposits

被引:37
|
作者
Singer, Donald A.
机构
[1] 10191 N Blaney Ave., Cupertino
关键词
Mineral deposit model; Power law; Grade and tonnage models; Monte Carlo simulation; Mineral resource assessments;
D O I
10.1016/j.oregeorev.2013.04.009
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
For national or global resource estimation of frequencies of metals a lognormal distribution has sometimes been assumed but never adequately tested. Tests of frequencies of Cu, Zn, Pb, Ag, Au, Mo, Re, Ni, Co, Nb2O3, REE2O3, Cr2O3, Pt, Pd, It, Rh, and Ru, contents in over 3000 well-explored mineral deposits display a poor fit to the lognormal distribution. Neither a lognormal distribution nor a power law is an adequate model of the metal contents across all deposits. When these metals are grouped into 28 geologically defined deposit types, only nine of the over 100 tests fail to be fit by the lognormal distribution, and most of those failures are in two deposit types suggesting problems with those types. Significant deviations from lognormal distributions of most metals when ignoring deposit types demonstrate that there is not a global lognormal or power law equation for these metals. Mean and standard deviation estimates of each metal within deposit types provide a basis for modeling undiscovered resources. When tracts of land permissive for specific deposit types are delineated, deposit density estimates and contained metal statistics can be used in Monte Carlo simulations to estimate total amounts of undiscovered metals with associated explicit uncertainties as demonstrated for undiscovered porphyry copper deposits in the Tibetan Plateau of China. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:80 / 86
页数:7
相关论文
共 50 条
  • [41] Tectonic and lithospheric controls on the heterogeneous temporal distribution of mineral deposits
    Groves, D. I.
    Vielreicher, R. M.
    Goldfarb, R. J.
    Hronsky, J. M. A.
    Condie, K. C.
    Mineral Deposit Research: Meeting the Global Challenge, Vols 1 and 2, 2005, : 11 - 14
  • [42] Base and precious metal resources in seafloor massive sulfide deposits
    Singer, Donald A.
    ORE GEOLOGY REVIEWS, 2014, 59 : 66 - 72
  • [43] Lineament net controlling distribution of superlarge mineral deposits in Russia
    Pertsov, A.V.
    Antipov, V.S.
    Gal'perov, G.V.
    Turchenko, S.I.
    2002, National Academy of Sciences (383)
  • [44] Lineament network controlling the distribution of superlarge mineral deposits in Russia
    Pertsov, AV
    Antipov, VS
    Gal'perov, GV
    Turchenko, SI
    DOKLADY EARTH SCIENCES, 2002, 383 (02) : 134 - 136
  • [45] Modeling the spatial distribution of mineral deposits using neural networks
    Skabar, Andrew
    NATURAL RESOURCE MODELING, 2007, 20 (03) : 435 - 450
  • [46] COMPUTATION OF RESOURCES AND GEOMETRIZATION OF NON-ORE MINERAL-DEPOSITS ON A COMPUTER
    ERMOLENKO, VA
    NIZGURETSKII, ZD
    DOKLADY AKADEMII NAUK BELARUSI, 1977, 21 (06): : 545 - 548
  • [47] Mineral Resources Evaluation in Narrow Deposits: A Case Study on a Layered Bauxite Deposit
    Maleki, Mohammad
    Mery, Nadia
    Soltani-Mohammadi, Saeed
    Emery, Xavier
    NATURAL RESOURCES RESEARCH, 2024, 33 (04) : 1471 - 1490
  • [48] MINERAL-RESOURCES OF NORTHERN KRASNOYARSK KRAY - WITH PARTICULAR REFERENCE TO PHOSPHATE DEPOSITS
    SHALMINA, GG
    SOVIET GEOGRAPHY REVIEW AND TRANSLATION, 1982, 23 (10): : 698 - 706
  • [49] Marine Authigenic Deposits Mineral - New Fields for the Development of Rare Earth Resources
    Zhang, Ying
    Liu, Changshui
    Gao, Lianfeng
    Zhang, Zhenguo
    Zhang, Peng
    MATERIALS PROCESSING TECHNOLOGY, PTS 1-4, 2011, 291-294 : 1748 - +
  • [50] Mineral deposits
    Dannenberg, A.
    PETERMANNS MITTEILUNGEN, 1915, 61 : 36 - 36